机器学习梯度下降学习最全代码

 2 E币 
成为会员,免费下载资料
文件大小:6.5 KB 上传者:易百纳用户01878 时间:2023-01-23 09:54:10 下载量:0
梯度下降法(英語:Gradient descent)是一个一阶最优化算法,通常也称为最陡下降法,但是不該與近似積分的最陡下降法(英語:Method of steepest descent)混淆。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
展开
折叠
538
评论
共 0 个
内容存在敏感词
    易百纳技术社区暂无数据
相关资料
关于作者
易百纳技术社区
易百纳用户01878
贡献资料 129
易百纳技术社区 我上传的资料
登录查看
我赚取的积分
登录查看
我赚取的收益
登录查看
上传资料 赚取积分兑换E币
易百纳技术社区
删除原因
广告/SPAM
恶意灌水
违规内容
文不对题
重复发帖
置顶时间设置
结束时间
举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-资料模块

审核失败

失败原因
备注
易百纳技术社区