Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf

 5 E币 
成为会员,免费下载资料
文件大小:1.43 MB 上传者:新唐单片机 时间:2022-01-05 18:44:00 下载量:5
CAM 算法是论文《Learning Deep Features for Discriminative Localization》中提出的,CNN网络虽然在训练时可能未提供对象的位置,但是仍然具有很强的定位特征能力,如图所示。图是 CAM 运行的效果,可以看到对于刷牙这一类,CNN 能有效地定位到牙刷,而对于锯树,CNN 能有效定位到电锯。 1.jpg 但是 CNN 后面通常会接全连接层,作者认为全连接层会影响 CNN 的定位能力。因此提出了 CAM 算法,用全局平均池化 GAP 代替全连接层,从而保留模型的定位特征能力。全局平均池化 GAP 通常起到正则化的作用,防止训练时的过拟合,GAP 和其他池化方法的区别如下图所示,全局的池化方法就是把池化的范围扩大到整个特征图的尺寸。 下图是 CAM 的模型示意图,最后一个卷积层后面采用了 GAP,GAP 后再利用 Softmax 层进行分类。图中最后一层卷积层的通道数为 n,因此 GAP 后得到的向量维度是 n,分别对应每个通道。图中的 w1, ..., wn 指 Softmax 层的权重,这里对应的是一个类 class 的权重 (图中的类是 Australian terrier 即澳大利亚梗犬)。
展开
折叠
777
评论
共 0 个
内容存在敏感词
    易百纳技术社区暂无数据
相关资料
关于作者
易百纳技术社区
新唐单片机
贡献资料 1
易百纳技术社区 我上传的资料
登录查看
我赚取的积分
登录查看
我赚取的收益
登录查看
上传资料 赚取积分兑换E币
易百纳技术社区
删除原因
广告/SPAM
恶意灌水
违规内容
文不对题
重复发帖
置顶时间设置
结束时间
举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-资料模块

审核失败

失败原因
备注
易百纳技术社区