xinyahu

xinyahu

0个粉丝

27

问答

0

专栏

14

资料

xinyahu  发布于  2018-12-13 16:24:29
采纳率 0%
27个问答
2262

机器学习算法与Python实践之(三)支持向量机(SVM)进阶

     
如果我们的正常的样本分布如下图左边所示,之所以说是正常的指的是,不是上面说的那样由于某些顽固的离群点导致的线性不可分。它是真的线性不可分。样本本身的分布就是这样的,如果也像样本那样,通过松弛变量硬拉一条线性分类边界出来,很明显这条分类面会非常糟糕。那怎么办呢?SVM对线性可分数据有效,对不可分的有何应对良策呢?是核方法(kernel trick)大展身手的时候了
易百纳技术社区文件: 机器学习算法与Python实践之(三)支持向量机(SVM)进阶.zip
下载
我来回答
回答0个
时间排序
认可量排序
易百纳技术社区暂无数据
或将文件直接拖到这里
悬赏:
E币
网盘
* 网盘链接:
* 提取码:
悬赏:
E币

Markdown 语法

  • 加粗**内容**
  • 斜体*内容*
  • 删除线~~内容~~
  • 引用> 引用内容
  • 代码`代码`
  • 代码块```编程语言↵代码```
  • 链接[链接标题](url)
  • 无序列表- 内容
  • 有序列表1. 内容
  • 缩进内容
  • 图片![alt](url)
+ 添加网盘链接/附件

Markdown 语法

  • 加粗**内容**
  • 斜体*内容*
  • 删除线~~内容~~
  • 引用> 引用内容
  • 代码`代码`
  • 代码块```编程语言↵代码```
  • 链接[链接标题](url)
  • 无序列表- 内容
  • 有序列表1. 内容
  • 缩进内容
  • 图片![alt](url)
相关问答
无更多相似问答 去提问
举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

易百纳技术社区