ccsutbs

ccsutbs

0个粉丝

5

问答

0

专栏

0

资料

ccsutbs  发布于  2017-09-12 10:35:52
采纳率 0%
5个问答
2970

海思3516跑opencv2.4.9的find_obj

 
本帖最后由 ccsutbs 于 2017-9-12 10:37 编辑

    近来无事,学习下opencv!

    环境ubunut16.04 opencv2.4.9 海思3516D

  首先下载opencv2.4.9.zip,cmake-gui
   
1.unzip opencv2.4.9.zaip
2.cd opencv
3.mkdir build
4.mkdir _install
5.cmake-gui
   <这里需要注意:选择arm-hisiv300-linux   arm-hisiv300-linux-gcc     arm-hisiv300-linux-g++  >
   查询错误信息,提到了CUDA,百度查了下,是某显卡相关库,对于arm-linux交叉编译没有用。故在列表中取消与之相关的的项,重新点击configure Generate
6.cd build
7.make
修改CMakeCache.txt
//Flags used by the linker.
CMAKE_EXE_LINKER_FLAGS:STRING= -lpthread -lrt
继续make
8.make install
9.cd _install
10.mkdir test
11.vi find_obg.cpp
/*
* A Demo to OpenCV Implementation of SURF
* Further Information Refer to "SURF: Speed-Up Robust Feature"
* Author: Liu Liu
* liuliu.1987+[email]opencv@gmail.com[/email]
*/
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/legacy/compat.hpp"
#include
#include
#include
using namespace std;
using namespace cv;
static void help()
{
    printf(
        "This program demonstrated the use of the SURF Detector and Descriptor using\n"
        "either FLANN (fast approx nearst neighbor classification) or brute force matching\n"
        "on planar objects.\n"
        "Usage:\n"
        "./find_obj , default is box.png  and box_in_scene.png\n\n");
    return;
}
// define whether to use approximate nearest-neighbor search
#define USE_FLANN
#ifdef USE_FLANN
static void
flannFindPairs( const CvSeq*, const CvSeq* objectDescriptors,
           const CvSeq*, const CvSeq* imageDescriptors, vector& ptpairs )
{
    int length = (int)(objectDescriptors->elem_size/sizeof(float));
    cv::Mat m_object(objectDescriptors->total, length, CV_32F);
    cv::Mat m_image(imageDescriptors->total, length, CV_32F);
    // copy descriptors
    CvSeqReader obj_reader;
    float* obj_ptr = m_object.ptr(0);
    cvStartReadSeq( objectDescriptors, &obj_reader );
    for(int i = 0; i < objectDescriptors->total; i++ )
    {
        const float* descriptor = (const float*)obj_reader.ptr;
        CV_NEXT_SEQ_ELEM( obj_reader.seq->elem_size, obj_reader );
        memcpy(obj_ptr, descriptor, length*sizeof(float));
        obj_ptr += length;
    }
    CvSeqReader img_reader;
    float* img_ptr = m_image.ptr(0);
    cvStartReadSeq( imageDescriptors, &img_reader );
    for(int i = 0; i < imageDescriptors->total; i++ )
    {
        const float* descriptor = (const float*)img_reader.ptr;
        CV_NEXT_SEQ_ELEM( img_reader.seq->elem_size, img_reader );
        memcpy(img_ptr, descriptor, length*sizeof(float));
        img_ptr += length;
    }
    // find nearest neighbors using FLANN
    cv::Mat m_indices(objectDescriptors->total, 2, CV_32S);
    cv::Mat m_dists(objectDescriptors->total, 2, CV_32F);
    cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4));  // using 4 randomized kdtrees
    flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked
    int* indices_ptr = m_indices.ptr(0);
    float* dists_ptr = m_dists.ptr(0);
    for (int i=0;i         if (dists_ptr[2*i]<0.6*dists_ptr[2*i+1]) {
            ptpairs.push_back(i);
            ptpairs.push_back(indices_ptr[2*i]);
        }
    }
}
#else
static double
compareSURFDescriptors( const float* d1, const float* d2, double best, int length )
{
    double total_cost = 0;
    assert( length % 4 == 0 );
    for( int i = 0; i < length; i += 4 )
    {
        double t0 = d1[i  ] - d2[i  ];
        double t1 = d1[i+1] - d2[i+1];
        double t2 = d1[i+2] - d2[i+2];
        double t3 = d1[i+3] - d2[i+3];
        total_cost += t0*t0 + t1*t1 + t2*t2 + t3*t3;
        if( total_cost > best )
            break;
    }
    return total_cost;
}
static int
naiveNearestNeighbor( const float* vec, int laplacian,
                      const CvSeq* model_keypoints,
                      const CvSeq* model_descriptors )
{
    int length = (int)(model_descriptors->elem_size/sizeof(float));
    int i, neighbor = -1;
    double d, dist1 = 1e6, dist2 = 1e6;
    CvSeqReader reader, kreader;
    cvStartReadSeq( model_keypoints, &kreader, 0 );
    cvStartReadSeq( model_descriptors, &reader, 0 );
    for( i = 0; i < model_descriptors->total; i++ )
    {
        const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr;
        const float* mvec = (const float*)reader.ptr;
        CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader );
        CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
        if( laplacian != kp->laplacian )
            continue;
        d = compareSURFDescriptors( vec, mvec, dist2, length );
        if( d < dist1 )
        {
            dist2 = dist1;
            dist1 = d;
            neighbor = i;
        }
        else if ( d < dist2 )
            dist2 = d;
    }
    if ( dist1 < 0.6*dist2 )
        return neighbor;
    return -1;
}
static void
findPairs( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors,
           const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, vector& ptpairs )
{
    int i;
    CvSeqReader reader, kreader;
    cvStartReadSeq( objectKeypoints, &kreader );
    cvStartReadSeq( objectDescriptors, &reader );
    ptpairs.clear();
    for( i = 0; i < objectDescriptors->total; i++ )
    {
        const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr;
        const float* descriptor = (const float*)reader.ptr;
        CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader );
        CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
        int nearest_neighbor = naiveNearestNeighbor( descriptor, kp->laplacian, imageKeypoints, imageDescriptors );
        if( nearest_neighbor >= 0 )
        {
            ptpairs.push_back(i);
            ptpairs.push_back(nearest_neighbor);
        }
    }
}
#endif
/* a rough implementation for object location */
static int
locatePlanarObject( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors,
                    const CvSeq* imageKeypoints, const CvSeq* imageDescriptors,
                    const CvPoint src_corners[4], CvPoint dst_corners[4] )
{
    double h[9];
    CvMat _h = cvMat(3, 3, CV_64F, h);
    vector ptpairs;
    vector pt1, pt2;
    CvMat _pt1, _pt2;
    int i, n;
#ifdef USE_FLANN
    flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );
#else
    findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );
#endif
    n = (int)(ptpairs.size()/2);
    if( n < 4 )
        return 0;
    pt1.resize(n);
    pt2.resize(n);
    for( i = 0; i < n; i++ )
    {
        pt1 = ((CvSURFPoint*)cvGetSeqElem(objectKeypoints,ptpairs[i*2]))->pt;
        pt2 = ((CvSURFPoint*)cvGetSeqElem(imageKeypoints,ptpairs[i*2+1]))->pt;
    }
    _pt1 = cvMat(1, n, CV_32FC2, &pt1[0] );
    _pt2 = cvMat(1, n, CV_32FC2, &pt2[0] );
    if( !cvFindHomography( &_pt1, &_pt2, &_h, CV_RANSAC, 5 ))
        return 0;
    for( i = 0; i < 4; i++ )
    {
        double x = src_corners.x, y = src_corners.y;
        double Z = 1./(h[6]*x + h[7]*y + h[8]);
        double X = (h[0]*x + h[1]*y + h[2])*Z;
        double Y = (h[3]*x + h[4]*y + h[5])*Z;
        dst_corners = cvPoint(cvRound(X), cvRound(Y));
    }
    return 1;
}
int main(int argc, char** argv)
{
    const char* object_filename = argc == 3 ? argv[1] : "box.png";
    const char* scene_filename = argc == 3 ? argv[2] : "box_in_scene.png";
    cv::initModule_nonfree();
    help();
    IplImage* object = cvLoadImage( object_filename, CV_LOAD_IMAGE_GRAYSCALE );
    IplImage* image = cvLoadImage( scene_filename, CV_LOAD_IMAGE_GRAYSCALE );
    if( !object || !image )
    {
        fprintf( stderr, "Can not load %s and/or %s\n",
            object_filename, scene_filename );
        exit(-1);
    }
    CvMemStorage* storage = cvCreateMemStorage(0);
#if 0
    cvNamedWindow("Object", 1);
    cvNamedWindow("Object Correspond", 1);
#endif
    static CvScalar colors[] =
    {
        {{0,0,255}},
        {{0,128,255}},
        {{0,255,255}},
        {{0,255,0}},
        {{255,128,0}},
        {{255,255,0}},
        {{255,0,0}},
        {{255,0,255}},
        {{255,255,255}}
    };
    IplImage* object_color = cvCreateImage(cvGetSize(object), 8, 3);
    cvCvtColor( object, object_color, CV_GRAY2BGR );
    CvSeq* objectKeypoints = 0, *objectDescriptors = 0;
    CvSeq* imageKeypoints = 0, *imageDescriptors = 0;
    int i;
    CvSURFParams params = cvSURFParams(500, 1);
    double tt = (double)cvGetTickCount();
    cvExtractSURF( object, 0, &objectKeypoints, &objectDescriptors, storage, params );
    printf("Object Descriptors: %d\n", objectDescriptors->total);
    cvExtractSURF( image, 0, &imageKeypoints, &imageDescriptors, storage, params );
    printf("Image Descriptors: %d\n", imageDescriptors->total);
    tt = (double)cvGetTickCount() - tt;
    printf( "Extraction time = %gms\n", tt/(cvGetTickFrequency()*1000.));
    CvPoint src_corners[4] = {{0,0}, {object->width,0}, {object->width, object->height}, {0, object->height}};
    CvPoint dst_corners[4];
    IplImage* correspond = cvCreateImage( cvSize(image->width, object->height+image->height), 8, 1 );
    cvSetImageROI( correspond, cvRect( 0, 0, object->width, object->height ) );
    cvCopy( object, correspond );
    cvSetImageROI( correspond, cvRect( 0, object->height, correspond->width, correspond->height ) );
    cvCopy( image, correspond );
    cvResetImageROI( correspond );
#ifdef USE_FLANN
    printf("Using approximate nearest neighbor search\n");
#endif
    if( locatePlanarObject( objectKeypoints, objectDescriptors, imageKeypoints,
        imageDescriptors, src_corners, dst_corners ))
    {
        for( i = 0; i < 4; i++ )
        {
            CvPoint r1 = dst_corners[i%4];
            CvPoint r2 = dst_corners[(i+1)%4];
            cvLine( correspond, cvPoint(r1.x, r1.y+object->height ),
                cvPoint(r2.x, r2.y+object->height ), colors[8] );
        }
    }
    vector ptpairs;
#ifdef USE_FLANN
    flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );
#else
    findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs );
#endif
    for( i = 0; i < (int)ptpairs.size(); i += 2 )
    {
        CvSURFPoint* r1 = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, ptpairs );
        CvSURFPoint* r2 = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, ptpairs[i+1] );
        cvLine( correspond, cvPointFrom32f(r1->pt),
            cvPoint(cvRound(r2->pt.x), cvRound(r2->pt.y+object->height)), colors[8] );
    }
#if 1
    cvShowImage( "Object Correspond", correspond );
#endif
    for( i = 0; i < objectKeypoints->total; i++ )
    {
        CvSURFPoint* r = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, i );
        CvPoint center;
        int radius;
        center.x = cvRound(r->pt.x);
        center.y = cvRound(r->pt.y);
        radius = cvRound(r->size*1.2/9.*2);
        cvCircle( object_color, center, radius, colors[0], 1, 8, 0 );
    }
#if 0
    cvShowImage( "Object", object_color );
#endif
    cvWaitKey(0);
#if 0
    cvDestroyWindow("Object");
    cvDestroyWindow("Object Correspond");
#endif
    return 0;
}

vi Makefile
CC = arm-hisiv300-linux-g++
DEMOTAR = find_obj
DEMOOBJ = find_obj.o
CFLAGS += -g -Wall -I/home/t/Desktop/open/opencv-2.4.9/_install/include
LDFLAGS += -L/home/t/Desktop/open/opencv-2.4.9/_install/lib -Wl,-Bdynamic -lopencv_objdetect -lopencv_features2d -lopencv_highgui -lopencv_calib3d -lopencv_nonfree -lopencv_imgproc -lopencv_legacy -lopencv_core -lopencv_flann -lopencv_gpu -lopencv_ml -lopencv_ocl -lopencv_photo -lopencv_stitching -lopencv_video -lopencv_videostab -lpthread
%.o: %.cpp
    @echo "[Compiling] $< ..."
    @$(CC) $(CFLAGS) -c $<
all: $(DEMOTAR)
$(DEMOTAR):$(DEMOOBJ)
    @$(CC) -o $@ $^ $(LDFLAGS)
.PHONY : clean
clean:
    rm -rf $(DEMOOBJ) $(DEMOTAR)

将_install下的lib目录拷贝到终端,运行 find_obg<图片自己拷贝>
发现cpu占用率99.6%,时间18812.3ms. <还有错误提示,是跟Windows显示有关的>

我来回答
回答7个
时间排序
认可量排序

kelisi

0个粉丝

8

问答

0

专栏

8

资料

kelisi 2017-09-12 13:56:38
认可0
这个建议版主果断射精

david

42个粉丝

368

问答

253

专栏

229

资料

david 2017-09-12 13:58:43
认可0
赞楼主,一上来看到好文。

david

42个粉丝

368

问答

253

专栏

229

资料

david 2017-09-12 13:59:14
认可0
[quote][url=forum.php?mod=redirect&goto=findpost&pid=63879&ptid=23474]kelisi 发表于 2017-9-12 13:56[/url]
这个建议版主果断射精[/quote]

这个要求果断满足你

ccsutbs

0个粉丝

5

问答

0

专栏

0

资料

ccsutbs 2017-09-13 11:52:23
认可0
[quote][url=forum.php?mod=redirect&goto=findpost&pid=63880&ptid=23474]david 发表于 2017-9-12 13:58[/url]
赞楼主,一上来看到好文。[/quote]

:L:L:L:L:L:L:L:L:L:L:L:L:L:L:L:L

ccsutbs

0个粉丝

5

问答

0

专栏

0

资料

ccsutbs 2017-09-13 18:57:50
认可0
[quote][url=forum.php?mod=redirect&goto=findpost&pid=63962&ptid=23474]hero 发表于 2017-9-13 15:33[/url]
好文[/quote]

今天跑海思yuv转jpg,然后在电脑做比较,效果还是不好

hero

0个粉丝

1

问答

0

专栏

0

资料

hero 2017-09-12 16:09:55
认可0
:):):):):):)

hero

0个粉丝

1

问答

0

专栏

0

资料

hero 2017-09-13 15:33:33
认可0
好文:):):):)
或将文件直接拖到这里
悬赏:
E币
网盘
* 网盘链接:
* 提取码:
悬赏:
E币

Markdown 语法

  • 加粗**内容**
  • 斜体*内容*
  • 删除线~~内容~~
  • 引用> 引用内容
  • 代码`代码`
  • 代码块```编程语言↵代码```
  • 链接[链接标题](url)
  • 无序列表- 内容
  • 有序列表1. 内容
  • 缩进内容
  • 图片![alt](url)
+ 添加网盘链接/附件

Markdown 语法

  • 加粗**内容**
  • 斜体*内容*
  • 删除线~~内容~~
  • 引用> 引用内容
  • 代码`代码`
  • 代码块```编程语言↵代码```
  • 链接[链接标题](url)
  • 无序列表- 内容
  • 有序列表1. 内容
  • 缩进内容
  • 图片![alt](url)
举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

易百纳技术社区