4320
- 收藏
- 点赞
- 分享
- 举报
基于ZigBee技术的射频芯片CC2430
ZigBee采用IEEE802.15.4标准,利用全球共用的公共频率2.4 GHz,应用于监视、控制网络时,其具有非常显著的低成本、低耗电、网络节点多、传输距离远等优势,目前被视为替代有线监视和控制网络领域最有前景的技术之一。
CC2430芯片以强大的集成开发环境作为支持,内部线路的交互式调试以遵从IDE的IAR工业标准为支持,得到嵌入式机构很高的认可。它结合Chipcon公司全球先进的ZigBee协议栈、工具包和参考设计,展示了领先的ZigBee解决方案。其产品广泛应用于汽车、工控系统和无线感应网络等领域,同时也适用于ZigBee之外2.4 GHz频率的其他设备。
1 CC2430芯片的主要特点
CC2430芯片延用了以往CC2420芯片的架构,在单个芯片上整合了ZigBee 射频(RF)前端、内存和微控制器。它使用1个8位MCU(8051),具有128 KB可编程闪存和8 KB的RAM,还包含模拟数字转换器(ADC)、几个定时器(Timer)、AES128协同处理器、看门狗定时器(Watchdog?timer)、32 kHz晶振的休眠模式定时器、上电复位电路(Power?On?Reset)、掉电检测电路(Brown?out?detection),以及21个可编程I/O引脚。
CC2430芯片采用0.18 μm CMOS工艺生产,工作时的电流损耗为27 mA;在接收和发射模式下,电流损耗分别低于27 mA或25 mA。CC2430的休眠模式和转换到主动模式的超短时间的特性,特别适合那些要求电池寿命非常长的应用。
CC2430芯片的主要特点如下:
◆ 高性能和低功耗的8051微控制器核。
◆ 集成符合IEEE802.15.4标准的2.4 GHz的 RF无线电收发机。
◆ 优良的无线接收灵敏度和强大的抗干扰性。
◆ 在休眠模式时仅0.9 μA的流耗,外部的中断或RTC能唤醒系统;在待机模式时少于0.6 μA的流耗,外部的中断能唤醒系统。
◆ 硬件支持CSMA/CA功能。
◆ 较宽的电压范围(2.0~3.6 V)。
◆ 数字化的RSSI/LQI支持和强大的DMA功能。
◆ 具有电池监测和温度感测功能。
◆ 集成了14位模数转换的ADC。
◆ 集成AES安全协处理器。
◆ 带有2个强大的支持几组协议的USART,以及1个符合IEEE 802.15.4规范的MAC计时器,1个常规的16位计时器和2个8位计时器。
◆ 强大和灵活的开发工具。
2 CC2430芯片的引脚功能
CC2430芯片采用7 mm×7mm QLP封装,共有48个引脚。全部引脚可分为I/O端口线引脚、电源线引脚和控制线引脚三类。
2.1 I/O端口线引脚功能
CC2430有21个可编程的I/O口引脚,P0、P1口是完全的8位口,P2口只有5个可使用的位。通过软件设定一组SFR寄存器的位和字节,可使这些引脚作为通常的I/O口或作为连接ADC、计时器或USART部件的外围设备I/O口使用。
I/O口有下面的关键特性:
◆ 可设置为通常的I/O口,也可设置为外围I/O口使用。
◆ 在输入时有上拉和下拉能力。
◆ 全部21个数字I/O口引脚都具有响应外部的中断能力。如果需要外部设备,可对I/O口引脚产生中断,同时外部的中断事件也能被用来唤醒休眠模式。
1~6脚(P1_2~ P1_7):具有4 mA输出驱动能力。
8,9脚(P1_0,P1_1):具有20 mA的驱动能力。
11~18脚(P0_0 ~P0_7):具有4 mA输出驱动能力。
43,44,45,46,48脚(P2_4,P2_3,P2_2,P2_1,P2_0):具有4 mA输出驱动能力。
2.2 电源线引脚功能
7脚(DVDD):为I/O提供2.0~3.6 V工作电压。
20脚(AVDD_SOC):为模拟电路连接2.0~3.6 V的电压。
23脚(AVDD_RREG):为模拟电路连接2.0~3.6 V的电压。
24脚(RREG_OUT):为25,27~31,35~40引脚端口提供1.8 V的稳定电压。
25脚 (AVDD_IF1 ):为接收器波段滤波器、模拟测试模块和VGA的第一部分电路提供1.8 V电压。
27脚(AVDD_CHP):为环状滤波器的第一部分电路和充电泵提供1.8 V电压。
28脚(VCO_GUARD):VCO屏蔽电路的报警连接端口
29脚(AVDD_VCO):为VCO和PLL环滤波器最后部分电路提供1.8 V电压。
30脚(AVDD_PRE):为预定标器、Div?2和LO缓冲器提供1.8 V的电压。
31脚(AVDD_RF1):为LNA、前置偏置电路和PA提供1.8 V的电压。
33脚(TXRX_SWITCH): 为PA提供调整电压。
35脚(AVDD_SW): 为LNA/PA交换电路提供1.8 V电压。
36脚(AVDD_RF2): 为接收和发射混频器提供1.8 V电压。
37脚(AVDD_IF2): 为低通滤波器和VGA的最后部分电路提供1.8 V电压。
38脚(AVDD_ADC): 为ADC和DAC的模拟电路部分提供1.8 V电压。
39脚(DVDD_ADC): 为ADC的数字电路部分提供1.8 V电压。
40脚(AVDD_DGUARD): 为隔离数字噪声电路连接电压。
41脚(AVDD_DREG): 向电压调节器核心提供2.0~3.6 V电压。
42脚(DCOUPL): 提供1.8 V的去耦电压,此电压不为外电路所使用。
47脚(DVDD): 为I/O端口提供2.0~3.6 V的电压。
2.3 控制线引脚功能
10脚(RESET_N): 复位引脚,低电平有效。
19脚(XOSC_Q2): 32 MHz的晶振引脚2。
21脚(XOSC_Q1): 32 MHz的晶振引脚1,或外部时钟输入引脚。
22脚(RBIAS1): 为参考电流提供精确的偏置电阻。
26脚(RBIAS2): 提供精确电阻,43 kΩ,±1%。
32脚(RF_P): 在RX期间向LNA输入正向射频信号;在TX期间接收来自PA的输入正向射频信号。
34脚(RF_N): 在RX期间向LNA输入负向射频信号;在TX期间接收来自PA的输入负向射频信号。
43脚 (P2_4/XOSC_Q2): 32.768 kHz XOSC的2.3端口。
44脚 (P2_4/XOSC_Q1): 32.768 kHz XOSC的2.4端口。
3 电路典型应用
3.1 硬件应用电路
CC2430芯片需要很少的外围部件配合就能实现信号的收发功能。图1为CC2430芯片的一种典型硬件应用电路。
电路使用一个非平衡天线,连接非平衡变压器可使天线性能更好。电路中的非平衡变压器由电容C341和电感L341、L321、L331以及一个PCB微波传输线组成,整个结构满足RF输入/输出匹配电阻(50 Ω)的要求。内部T/R交换电路完成LNA和PA之间的交换。R221和R261为偏置电阻,电阻R221主要用来为32 MHz的晶振提供一个合适的工作电流。用1个32 MHz的石英谐振器(XTAL1)和2个电容(C191和C211)构成一个32 MHz的晶振电路。用1个32.768 kHz的石英谐振器(XTAL2)和2个电容(C441和C431)构成一个32.768 kHz的晶振电路。电压调节器为所有要求1.8 V电压的引脚和内部电源供电,C241和C421电容是去耦合电容,用来电源滤波,以提高芯片工作的稳定性。
3.2 软件编程
由于篇幅限制,下面仅给出在32 MHz系统时钟下,用DMA向闪存内部写入程序的流程图和部分源代码。DMA向Flash写程序流程如图2所示。
MOV DPTR,#DMACFG ;为DMA通道结构设定一
;个带有地址的数据指针,
;开始写入DMA结构
MOV A,#SRC_HI ;源数据的高位地址
MOVX @DPTR ,A
INC DPTR
MOV A,#SRC_LO ;源数据的低位地址
MOVX @DPTR,A
INC DPTR
MOV A,#0DFh ;高位地址的定义
MOV X@DPTR,A
INC DPTR
MOV A,#0AFh ;低位地址的定义
MOVX @DPTR,A
INC DPTR
MOV A,#BLK_LEN ;数据的长度
MOVX @DPTR,A
INC DPTR
MOV A,#012h ;8位,单模式,Flash触发器使用
MOVX @DPTR,A
INC DPTR
MOV A,#042h ;屏蔽中断,DMA高通道优先
MOVX @DPTR,A
MOV DMA0CFGL,#DMACFG_LO ;为当前的DMA结
;构设置开始地址
MOV DMA0CFGH,#DMACFG_HI
MOV DMAARM,#01h ;设置DMA的0通道
MOV FADDRH,#00h ;设置闪存高位地址
MOV FADDRL,#01h ;设置闪存低位地址
MOV FWT,#2Ah ;设置闪存计时
MOV FCTL,#02h ;开始向闪存写程序
结语
目前,国内外嵌入式射频芯片中,CC2430芯片是性能最好、功能更强的一个。它结合了市场领先的Z?StackTM ZigBeeTM协议软件和其他Chipcon公司的软件工具,为开发出无接口、紧凑、高性能和可靠的无线网络产品提供了便利。相信在未来几年,它的应用将会涉及到社会的更多领域。
CC2430芯片以强大的集成开发环境作为支持,内部线路的交互式调试以遵从IDE的IAR工业标准为支持,得到嵌入式机构很高的认可。它结合Chipcon公司全球先进的ZigBee协议栈、工具包和参考设计,展示了领先的ZigBee解决方案。其产品广泛应用于汽车、工控系统和无线感应网络等领域,同时也适用于ZigBee之外2.4 GHz频率的其他设备。
1 CC2430芯片的主要特点
CC2430芯片延用了以往CC2420芯片的架构,在单个芯片上整合了ZigBee 射频(RF)前端、内存和微控制器。它使用1个8位MCU(8051),具有128 KB可编程闪存和8 KB的RAM,还包含模拟数字转换器(ADC)、几个定时器(Timer)、AES128协同处理器、看门狗定时器(Watchdog?timer)、32 kHz晶振的休眠模式定时器、上电复位电路(Power?On?Reset)、掉电检测电路(Brown?out?detection),以及21个可编程I/O引脚。
CC2430芯片采用0.18 μm CMOS工艺生产,工作时的电流损耗为27 mA;在接收和发射模式下,电流损耗分别低于27 mA或25 mA。CC2430的休眠模式和转换到主动模式的超短时间的特性,特别适合那些要求电池寿命非常长的应用。
CC2430芯片的主要特点如下:
◆ 高性能和低功耗的8051微控制器核。
◆ 集成符合IEEE802.15.4标准的2.4 GHz的 RF无线电收发机。
◆ 优良的无线接收灵敏度和强大的抗干扰性。
◆ 在休眠模式时仅0.9 μA的流耗,外部的中断或RTC能唤醒系统;在待机模式时少于0.6 μA的流耗,外部的中断能唤醒系统。
◆ 硬件支持CSMA/CA功能。
◆ 较宽的电压范围(2.0~3.6 V)。
◆ 数字化的RSSI/LQI支持和强大的DMA功能。
◆ 具有电池监测和温度感测功能。
◆ 集成了14位模数转换的ADC。
◆ 集成AES安全协处理器。
◆ 带有2个强大的支持几组协议的USART,以及1个符合IEEE 802.15.4规范的MAC计时器,1个常规的16位计时器和2个8位计时器。
◆ 强大和灵活的开发工具。
2 CC2430芯片的引脚功能
CC2430芯片采用7 mm×7mm QLP封装,共有48个引脚。全部引脚可分为I/O端口线引脚、电源线引脚和控制线引脚三类。
2.1 I/O端口线引脚功能
CC2430有21个可编程的I/O口引脚,P0、P1口是完全的8位口,P2口只有5个可使用的位。通过软件设定一组SFR寄存器的位和字节,可使这些引脚作为通常的I/O口或作为连接ADC、计时器或USART部件的外围设备I/O口使用。
I/O口有下面的关键特性:
◆ 可设置为通常的I/O口,也可设置为外围I/O口使用。
◆ 在输入时有上拉和下拉能力。
◆ 全部21个数字I/O口引脚都具有响应外部的中断能力。如果需要外部设备,可对I/O口引脚产生中断,同时外部的中断事件也能被用来唤醒休眠模式。
1~6脚(P1_2~ P1_7):具有4 mA输出驱动能力。
8,9脚(P1_0,P1_1):具有20 mA的驱动能力。
11~18脚(P0_0 ~P0_7):具有4 mA输出驱动能力。
43,44,45,46,48脚(P2_4,P2_3,P2_2,P2_1,P2_0):具有4 mA输出驱动能力。
2.2 电源线引脚功能
7脚(DVDD):为I/O提供2.0~3.6 V工作电压。
20脚(AVDD_SOC):为模拟电路连接2.0~3.6 V的电压。
23脚(AVDD_RREG):为模拟电路连接2.0~3.6 V的电压。
24脚(RREG_OUT):为25,27~31,35~40引脚端口提供1.8 V的稳定电压。
25脚 (AVDD_IF1 ):为接收器波段滤波器、模拟测试模块和VGA的第一部分电路提供1.8 V电压。
27脚(AVDD_CHP):为环状滤波器的第一部分电路和充电泵提供1.8 V电压。
28脚(VCO_GUARD):VCO屏蔽电路的报警连接端口
29脚(AVDD_VCO):为VCO和PLL环滤波器最后部分电路提供1.8 V电压。
30脚(AVDD_PRE):为预定标器、Div?2和LO缓冲器提供1.8 V的电压。
31脚(AVDD_RF1):为LNA、前置偏置电路和PA提供1.8 V的电压。
33脚(TXRX_SWITCH): 为PA提供调整电压。
35脚(AVDD_SW): 为LNA/PA交换电路提供1.8 V电压。
36脚(AVDD_RF2): 为接收和发射混频器提供1.8 V电压。
37脚(AVDD_IF2): 为低通滤波器和VGA的最后部分电路提供1.8 V电压。
38脚(AVDD_ADC): 为ADC和DAC的模拟电路部分提供1.8 V电压。
39脚(DVDD_ADC): 为ADC的数字电路部分提供1.8 V电压。
40脚(AVDD_DGUARD): 为隔离数字噪声电路连接电压。
41脚(AVDD_DREG): 向电压调节器核心提供2.0~3.6 V电压。
42脚(DCOUPL): 提供1.8 V的去耦电压,此电压不为外电路所使用。
47脚(DVDD): 为I/O端口提供2.0~3.6 V的电压。
2.3 控制线引脚功能
10脚(RESET_N): 复位引脚,低电平有效。
19脚(XOSC_Q2): 32 MHz的晶振引脚2。
21脚(XOSC_Q1): 32 MHz的晶振引脚1,或外部时钟输入引脚。
22脚(RBIAS1): 为参考电流提供精确的偏置电阻。
26脚(RBIAS2): 提供精确电阻,43 kΩ,±1%。
32脚(RF_P): 在RX期间向LNA输入正向射频信号;在TX期间接收来自PA的输入正向射频信号。
34脚(RF_N): 在RX期间向LNA输入负向射频信号;在TX期间接收来自PA的输入负向射频信号。
43脚 (P2_4/XOSC_Q2): 32.768 kHz XOSC的2.3端口。
44脚 (P2_4/XOSC_Q1): 32.768 kHz XOSC的2.4端口。
3 电路典型应用
3.1 硬件应用电路
CC2430芯片需要很少的外围部件配合就能实现信号的收发功能。图1为CC2430芯片的一种典型硬件应用电路。
电路使用一个非平衡天线,连接非平衡变压器可使天线性能更好。电路中的非平衡变压器由电容C341和电感L341、L321、L331以及一个PCB微波传输线组成,整个结构满足RF输入/输出匹配电阻(50 Ω)的要求。内部T/R交换电路完成LNA和PA之间的交换。R221和R261为偏置电阻,电阻R221主要用来为32 MHz的晶振提供一个合适的工作电流。用1个32 MHz的石英谐振器(XTAL1)和2个电容(C191和C211)构成一个32 MHz的晶振电路。用1个32.768 kHz的石英谐振器(XTAL2)和2个电容(C441和C431)构成一个32.768 kHz的晶振电路。电压调节器为所有要求1.8 V电压的引脚和内部电源供电,C241和C421电容是去耦合电容,用来电源滤波,以提高芯片工作的稳定性。
3.2 软件编程
由于篇幅限制,下面仅给出在32 MHz系统时钟下,用DMA向闪存内部写入程序的流程图和部分源代码。DMA向Flash写程序流程如图2所示。
MOV DPTR,#DMACFG ;为DMA通道结构设定一
;个带有地址的数据指针,
;开始写入DMA结构
MOV A,#SRC_HI ;源数据的高位地址
MOVX @DPTR ,A
INC DPTR
MOV A,#SRC_LO ;源数据的低位地址
MOVX @DPTR,A
INC DPTR
MOV A,#0DFh ;高位地址的定义
MOV X@DPTR,A
INC DPTR
MOV A,#0AFh ;低位地址的定义
MOVX @DPTR,A
INC DPTR
MOV A,#BLK_LEN ;数据的长度
MOVX @DPTR,A
INC DPTR
MOV A,#012h ;8位,单模式,Flash触发器使用
MOVX @DPTR,A
INC DPTR
MOV A,#042h ;屏蔽中断,DMA高通道优先
MOVX @DPTR,A
MOV DMA0CFGL,#DMACFG_LO ;为当前的DMA结
;构设置开始地址
MOV DMA0CFGH,#DMACFG_HI
MOV DMAARM,#01h ;设置DMA的0通道
MOV FADDRH,#00h ;设置闪存高位地址
MOV FADDRL,#01h ;设置闪存低位地址
MOV FWT,#2Ah ;设置闪存计时
MOV FCTL,#02h ;开始向闪存写程序
结语
目前,国内外嵌入式射频芯片中,CC2430芯片是性能最好、功能更强的一个。它结合了市场领先的Z?StackTM ZigBeeTM协议软件和其他Chipcon公司的软件工具,为开发出无接口、紧凑、高性能和可靠的无线网络产品提供了便利。相信在未来几年,它的应用将会涉及到社会的更多领域。
我来回答
回答0个
时间排序
认可量排序
暂无数据
或将文件直接拖到这里
悬赏:
E币
网盘
* 网盘链接:
* 提取码:
悬赏:
E币
Markdown 语法
- 加粗**内容**
- 斜体*内容*
- 删除线~~内容~~
- 引用> 引用内容
- 代码`代码`
- 代码块```编程语言↵代码```
- 链接[链接标题](url)
- 无序列表- 内容
- 有序列表1. 内容
- 缩进内容
- 图片![alt](url)
相关问答
-
2008-12-13 14:32:01
-
2008-12-13 14:23:25
-
2010-06-03 00:05:57
-
2014-11-19 09:52:17
-
2010-02-04 10:19:15
-
2010-01-21 11:06:33
-
2013-11-16 13:35:33
-
2013-11-16 16:18:56
-
2013-12-10 20:50:24
-
2009-03-11 16:50:39
-
2010-04-04 22:55:02
-
2013-11-26 20:26:23
-
2013-08-29 19:30:21
-
2016-03-25 16:48:44
-
2014-11-19 08:51:30
-
2010-02-04 10:34:54
-
2018-12-13 13:58:05
-
2013-08-29 15:02:43
-
2008-10-30 14:56:58
无更多相似问答 去提问
点击登录
-- 积分
-- E币
提问
—
收益
—
被采纳
—
我要提问
切换马甲
上一页
下一页
悬赏问答
-
50如何获取vpss chn的图像修改后发送至vo
-
5FPGA通过Bt1120传YUV422数据过来,vi接收不到数据——3516dv500
-
50SS928 运行PQtools 拼接 推到设备里有一半画面会异常
-
53536AV100的sample_vdec输出到CVBS显示
-
10海思板子mpp怎么在vi阶段改变视频数据尺寸
-
10HI3559AV100 多摄像头同步模式
-
9海思ss928单路摄像头vio中加入opencv处理并显示
-
10EB-RV1126-BC-191板子运行自己编码的程序
-
10求HI3519DV500_SDK_V2.0.1.1
-
5有偿求HI3516DV500 + OV5647驱动
举报反馈
举报类型
- 内容涉黄/赌/毒
- 内容侵权/抄袭
- 政治相关
- 涉嫌广告
- 侮辱谩骂
- 其他
详细说明
提醒
你的问题还没有最佳答案,是否结题,结题后将扣除20%的悬赏金
取消
确认
提醒
你的问题还没有最佳答案,是否结题,结题后将根据回答情况扣除相应悬赏金(1回答=1E币)
取消
确认