OpenCV图像缩放resize各种插值方式的比较
1. resize函数说明
OpenCV提供了resize函数来改变图像的大小,函数原型如下:
void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR );
参数说明:
- src:输入,原图像,即待改变大小的图像;
- dst:输出,改变大小之后的图像,这个图像和原图像具有相同的内容,只是大小和原图像不一样而已;
- dsize:输出图像的大小。如果这个参数不为0,那么就代表将原图像缩放到这个Size(width,height)指定的大小;如果这个参数为0,那么原图像缩放之后的大小就要通过下面的公式来计算:
dsize = Size(round(fxsrc.cols), round(fysrc.rows))
其中,fx和fy就是下面要说的两个参数,是图像width方向和height方向的缩放比例。- fx:width方向的缩放比例,如果它是0,那么它就会按照(double)dsize.width/src.cols来计算;
- fy:height方向的缩放比例,如果它是0,那么它就会按照(double)dsize.height/src.rows来计算;
- interpolation:这个是指定插值的方式,图像缩放之后,肯定像素要进行重新计算的,就靠这个参数来指定重新计算像素的方式,有以下几种:
INTER_NEAREST - 最邻近插值
INTER_LINEAR - 双线性插值,如果最后一个参数你不指定,默认使用这种方法
INTER_AREA -区域插值 resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
INTER_CUBIC - 4x4像素邻域内的双立方插值
INTER_LANCZOS4 - 8x8像素邻域内的Lanczos插值
使用注意事项:
dsize和fx/fy不能同时为0,要么你就指定好dsize的值,让fx和fy空置直接使用默认值,就像
要么你就让dsize为0,指定好fx和fy的值,比如fx=fy=0.5,那么就相当于把原图两个方向缩小一倍!
OpenCV官方说明:注意红色方框那句话:OpenCV: Geometric Image Transformations
To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR (faster but still looks OK).
2.各种插值方式的比较
OpenCV的cv::resize函数支持多种插值方式,这里主要比较下面四个常用的插值方式。
2.1 INTER_NEAREST(最近邻插值)
最近邻插值是最简单的插值方法,选取离目标点最近的点作为新的插入点,计算公式表示如下:
插值后的边缘效果:由于是以最近的点作为新的插入点,因此边缘不会出现缓慢的渐慢过度区域,这也导致放大的图像容易出现锯齿的现象
2.2 INTER_CUBIC (三次样条插值)
插值后的边缘效果:可以有效避免出现锯齿的现象
2.3 INTER_LINEAR(线性插值)
线性插值是以距离为权重的一种插值方式。
插值后的边缘效果:可以有效避免出现锯齿的现象
2.4 INTER_AREA (区域插值)
区域插值共分三种情况,图像放大时类似于双线性插值,图像缩小(x轴、y轴同时缩小)又分两种情况,此情况下可以避免波纹出现。因此对图像进行缩小时,为了避免出现波纹现象,推荐采用区域插值方法。
OpenGL说明文档有这么解释:To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR (faster but still looks OK).
如果要缩小图像,通常推荐使用INTER_AREA插值效果最好,而要放大图像,通常使用INTER_CUBIC(速度较慢,但效果最好),或者使用INTER_LINEAR(速度较快,效果还可以)。
插值后的边缘效果:
测试代码:
#include <chrono>
#include <opencv2/opencv.hpp>
#define millisecond 1000000
#define DEBUG_PRINT(...) printf( __VA_ARGS__); printf("\n")
#define DEBUG_TIME(time_) auto time_ =std::chrono::high_resolution_clock::now()
#define RUN_TIME(time_) (double)(time_).count()/millisecond
using namespace std;
cv::Mat image_resize(cv::Mat image, int width, int height, int interpolation, int num) {
cv::Mat dest;
for (int i = 0; i < num; ++i) {
cv::resize(image, dest, cv::Size(width, height), 0, 0, interpolation);//最近邻插值
}
return dest;
}
int main() {
string path = "../1.jpg";
cv::Mat image = cv::imread(path);
cv::resize(image, image, cv::Size(1000, 1000));
int re_width = 900;
int re_height = 900;
int num=10;
cv::Mat image2X_INTER_NEAREST;
cv::Mat image2X_INTER_LINEAR;
cv::Mat image2X_INTER_AREA;
cv::Mat image2X_INTER_CUBIC;
cv::Mat initMat;
DEBUG_PRINT("image input size:%dx%d", image.rows, image.cols);
DEBUG_TIME(T0);
image2X_INTER_NEAREST=image_resize(image, re_width, re_height, cv::INTER_NEAREST, num);
DEBUG_TIME(T1);
image2X_INTER_LINEAR=image_resize(image, re_width, re_height, cv::INTER_LINEAR, num);
DEBUG_TIME(T2);
image2X_INTER_AREA=image_resize(image, re_width, re_height, cv::INTER_AREA, num);
DEBUG_TIME(T3);
image2X_INTER_CUBIC=image_resize(image, re_width, re_height, cv::INTER_CUBIC, num);
DEBUG_TIME(T4);
DEBUG_PRINT("resize_image:%dx%d,INTER_NEAREST:%3.3fms",
image2X_INTER_NEAREST.rows,
image2X_INTER_NEAREST.cols,
RUN_TIME(T1 - T0)/num);
DEBUG_PRINT("resize_image:%dx%d,INTER_LINEAR :%3.3fms",
image2X_INTER_LINEAR.rows,
image2X_INTER_LINEAR.cols,
RUN_TIME(T2 - T1)/num);
DEBUG_PRINT("resize_image:%dx%d,INTER_AREA :%3.3fms",
image2X_INTER_AREA.rows,
image2X_INTER_AREA.cols,
RUN_TIME(T3 - T2)/num);
DEBUG_PRINT("resize_image:%dx%d,INTER_CUBIC :%3.3fms",
image2X_INTER_CUBIC.rows,
image2X_INTER_CUBIC.cols,
RUN_TIME(T4 - T3)/num);
return 0;
}
运行结果:
image input size:1000x1000
resize_image:900x900,INTER_NEAREST:0.389ms
resize_image:900x900,INTER_LINEAR :0.605ms
resize_image:900x900,INTER_AREA :2.611ms
resize_image:900x900,INTER_CUBIC :1.920ms
3. 总结
测试结果表明:
速度比较:INTER_NEAREST(最近邻插值)>INTER_LINEAR(线性插值)>INTER_CUBIC(三次样条插值)>INTER_AREA (区域插值)
对图像进行缩小时,为了避免出现波纹现象,推荐采用INTER_AREA 区域插值方法。
OpenCV推荐:如果要缩小图像,通常推荐使用#INTER_AREA插值效果最好,而要放大图像,通常使用INTER_CUBIC(速度较慢,但效果最好),或者使用INTER_LINEAR(速度较快,效果还可以)。至于最近邻插值INTER_NEAREST,一般不推荐使用
- 分享
- 举报
-
浏览量:2244次2024-03-04 14:01:52
-
浏览量:4860次2021-01-19 16:45:32
-
浏览量:2694次2020-08-12 09:33:36
-
浏览量:550次2023-07-17 13:48:57
-
浏览量:1081次2023-06-02 17:41:25
-
浏览量:5094次2021-04-27 16:30:07
-
浏览量:3223次2019-12-17 09:31:42
-
浏览量:1876次2021-01-27 16:48:37
-
浏览量:5884次2021-01-29 17:06:57
-
浏览量:1149次2023-11-03 10:48:42
-
浏览量:566次2023-12-15 14:28:09
-
浏览量:4523次2021-01-12 18:43:19
-
浏览量:5602次2021-02-09 14:27:57
-
浏览量:1303次2024-03-04 14:48:01
-
浏览量:534次2023-06-03 15:58:33
-
浏览量:1185次2023-12-20 16:40:32
-
浏览量:685次2023-12-19 11:06:03
-
浏览量:4745次2021-01-21 14:02:11
-
浏览量:757次2023-11-09 13:58:15
-
广告/SPAM
-
恶意灌水
-
违规内容
-
文不对题
-
重复发帖
Asura
感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~
举报类型
- 内容涉黄/赌/毒
- 内容侵权/抄袭
- 政治相关
- 涉嫌广告
- 侮辱谩骂
- 其他
详细说明