RK3568的CAN驱动适配

RK3568的CAN驱动适配 技术小宅 2024-01-10 10:46:47 1783

背景:

某个项目上使用RK3568的芯片,需要用到4路CAN接口进行通信,经过方案评审后决定使用RK3568自带的3路CAN外加一路spi转的CAN实现功能,在这个平台上进行CAN驱动的适配和测试。

1.内核驱动模块配置

根据官方sdk提供的驱动适配手册,芯片自带的CAN接口驱动文件在:

drivers/net/can/rockchip/rockchip_can.c
drivers/net/can/rockchip/rockchip_canfd.c
drivers/net/can/spi/mcp251x.c

要启用该驱动,需要在SDK中配置使能内核的驱动模块。

需要注意的是,在make menuconfig配置使能后生成的config文件,在执行编译时会被默认配置刷掉,所以最终需要将配置同步到

kernel/arch/arm64/configs/rockchip_linux_defconfig

2.设备树配置

根据官方指导手册配置CAN接口设备树rk3568-evb.dtsi

&can1 {
        assigned-clocks = <&cru CLK_CAN0>;
        assigned-clock-rates = <200000000>;
        pinctrl-names = "default";
        pinctrl-0 = <&can0m0_pins>;
        status = "disabled";
};

&can0 {
    assigned-clocks = <&cru CLK_CAN1>;
    assigned-clock-rates = <200000000>;
    pinctrl-names = "default";
    pinctrl-0 = <&can1m1_pins>;
    status = "disabled";
};

&can2 {
    assigned-clocks = <&cru CLK_CAN2>;
    assigned-clock-rates = <200000000>;
    pinctrl-names = "default";
    pinctrl-0 = <&can2m0_pins>;
    status = "disabled";
};

由于我试用的设备树参照开发板模板,所以按照修改rk3568-evb1-ddr4-v10.dtsi修改修改添加CAN使能以及spi转CAN的mcp251x的设备树:

/ {

        mcp2515_reset: mcp2515_reset {
                        label = "mcp2515_reset:ctrl";
                        linux,default-trigger = "ir-power-click";
                        default-state = "on";
                        gpios = <&gpio3 RK_PA1 GPIO_ACTIVE_HIGH>;
                        pinctrl-names = "default";
                        pinctrl-0 = <&mcp2515_reset_pins>;
                };

    mcp251x_clk: mcp251x-clk {
                compatible = "fixed-clock";
                #clock-cells = <0>;
                clock-frequency = <16000000>;       //根据MCP2515模块的硬件晶振设置 8MHz or 16MHz
        };

};

&can0 {
    status = "okay";
    //compatible = "rockchip,canfd-1.0";
    //compatible = "rockchip,can-2.0";
    compatible = "rockchip,rk3568-can-2.0";
};

&can1 {
    status = "okay";
    //compatible = "rockchip,canfd-1.0";
    //compatible = "rockchip,can-2.0";
    compatible = "rockchip,rk3568-can-2.0";
};

&can2 {
    status = "okay";
    //compatible = "rockchip,canfd-1.0";
    //compatible = "rockchip,can-2.0";
    compatible = "rockchip,rk3568-can-2.0";
};

&spi2 {
        status = "okay";
        max-freq = <48000000>;
        dev-port = <0>;
        pinctrl-0 = <&spi2m1_pins &spi2m1_cs0>;
//    pinctrl-1 = <&spi1m1_pins_hs &spi1m1_cs0_hs>;
//      dma-names = "tx","rx";

        mcp2515: can@00 {
                status = "okay";
                compatible = "microchip,mcp2515";
                reg = <0x00>;
                clocks = <&mcp251x_clk>;
                interrupt-parent = <&gpio3>;
                interrupts = <RK_PB5 IRQ_TYPE_EDGE_FALLING>;//
                spi-max-frequency = <10000000>; //<1000000>; //<24000000>;
                pinctrl-names = "default";
                pinctrl-0 = <&mcp2515_irq1_pins>;

                poll_mode = <0>;
                enable_dma = <1>;

                //vdd-supply = <&mcp251x_vcc>;
                vdd-supply = <&vcc_3v3>;
                xceiver-supply = <&vcc_3v3>;
        };
};

&pinctrl {
        mcp2515 {
        mcp2515_vcc3v3_en: mcp2515-vcc3v3-en {
            rockchip,pins = <0 RK_PC7 RK_FUNC_GPIO &pcfg_pull_none>;
        };

        mcp2515_irq1_pins: mcp2515-irq1-pins {
                        rockchip,pins = <3 RK_PB5 RK_FUNC_GPIO &pcfg_pull_none>;
                };

        mcp2515_reset_pins: mcp2515-reset-pins {
                        rockchip,pins = <3 RK_PA1 RK_FUNC_GPIO &pcfg_pull_none>;
                };

        };
};

需要注意的是,mcp251x的驱动在官方的sdk中是没有包含的,需要自己添加一直,在调试过程中需要特别注意spi转CAN的芯片的IRQ中断配置,收发都会用到该中断引脚。驱动代码如下:

// SPDX-License-Identifier: GPL-2.0-only
/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 */

#include <linux/bitfield.h>
#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/led.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/gpio.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>

/* SPI interface instruction set */
#define INSTRUCTION_WRITE    0x02
#define INSTRUCTION_READ    0x03
#define INSTRUCTION_BIT_MODIFY    0x05
#define INSTRUCTION_LOAD_TXB(n)    (0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)    (((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET    0xC0
#define RTS_TXB0        0x01
#define RTS_TXB1        0x02
#define RTS_TXB2        0x04
#define INSTRUCTION_RTS(n)    (0x80 | ((n) & 0x07))

/* MPC251x registers */
#define BFPCTRL            0x0c
#  define BFPCTRL_B0BFM        BIT(0)
#  define BFPCTRL_B1BFM        BIT(1)
#  define BFPCTRL_BFM(n)    (BFPCTRL_B0BFM << (n))
#  define BFPCTRL_BFM_MASK    GENMASK(1, 0)
#  define BFPCTRL_B0BFE        BIT(2)
#  define BFPCTRL_B1BFE        BIT(3)
#  define BFPCTRL_BFE(n)    (BFPCTRL_B0BFE << (n))
#  define BFPCTRL_BFE_MASK    GENMASK(3, 2)
#  define BFPCTRL_B0BFS        BIT(4)
#  define BFPCTRL_B1BFS        BIT(5)
#  define BFPCTRL_BFS(n)    (BFPCTRL_B0BFS << (n))
#  define BFPCTRL_BFS_MASK    GENMASK(5, 4)
#define TXRTSCTRL        0x0d
#  define TXRTSCTRL_B0RTSM    BIT(0)
#  define TXRTSCTRL_B1RTSM    BIT(1)
#  define TXRTSCTRL_B2RTSM    BIT(2)
#  define TXRTSCTRL_RTSM(n)    (TXRTSCTRL_B0RTSM << (n))
#  define TXRTSCTRL_RTSM_MASK    GENMASK(2, 0)
#  define TXRTSCTRL_B0RTS    BIT(3)
#  define TXRTSCTRL_B1RTS    BIT(4)
#  define TXRTSCTRL_B2RTS    BIT(5)
#  define TXRTSCTRL_RTS(n)    (TXRTSCTRL_B0RTS << (n))
#  define TXRTSCTRL_RTS_MASK    GENMASK(5, 3)
#define CANSTAT          0x0e
#define CANCTRL          0x0f
#  define CANCTRL_REQOP_MASK        0xe0
#  define CANCTRL_REQOP_CONF        0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP        0x20
#  define CANCTRL_REQOP_NORMAL        0x00
#  define CANCTRL_OSM            0x08
#  define CANCTRL_ABAT            0x10
#define TEC          0x1c
#define REC          0x1d
#define CNF1          0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2          0x29
#  define CNF2_BTLMODE       0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3          0x28
#  define CNF3_SOF       0x08
#  define CNF3_WAKFIL       0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE          0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF          0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
#define EFLG          0x2d
#  define EFLG_EWARN    0x01
#  define EFLG_RXWAR    0x02
#  define EFLG_TXWAR    0x04
#  define EFLG_RXEP    0x08
#  define EFLG_TXEP    0x10
#  define EFLG_TXBO    0x20
#  define EFLG_RX0OVR    0x40
#  define EFLG_RX1OVR    0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF    0x40
#  define TXBCTRL_MLOA    0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT    0x04
#  define RXBCTRL_RXM0    0x20
#  define RXBCTRL_RXM1    0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
#  define RXBSIDL_SRR   0x10
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)

#define GET_BYTE(val, byte)            \
    (((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)            \
    (((val) & 0xff) << ((byte) * 8))

/* Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN    8
#define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS    128

#define TX_ECHO_SKB_MAX    1

#define MCP251X_OST_DELAY_MS    (5)

#define DEVICE_NAME "mcp251x"

static const struct can_bittiming_const mcp251x_bittiming_const = {
    .name = DEVICE_NAME,
    .tseg1_min = 3,
    .tseg1_max = 16,
    .tseg2_min = 2,
    .tseg2_max = 8,
    .sjw_max = 4,
    .brp_min = 1,
    .brp_max = 64,
    .brp_inc = 1,
};

enum mcp251x_model {
    CAN_MCP251X_MCP2510    = 0x2510,
    CAN_MCP251X_MCP2515    = 0x2515,
    CAN_MCP251X_MCP25625    = 0x25625,
};

struct mcp251x_priv {
    struct can_priv       can;
    struct net_device *net;
    struct spi_device *spi;
    enum mcp251x_model model;

    struct mutex mcp_lock; /* SPI device lock */

    u8 *spi_tx_buf;
    u8 *spi_rx_buf;

    struct sk_buff *tx_skb;
    int tx_len;

    struct workqueue_struct *wq;
    struct work_struct tx_work;
    struct work_struct restart_work;

    int force_quit;
    int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
    int restart_tx;
    struct regulator *power;
    struct regulator *transceiver;
    struct clk *clk;
#ifdef CONFIG_GPIOLIB
    struct gpio_chip gpio;
    u8 reg_bfpctrl;
#endif
};

#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
    struct mcp251x_priv *priv = spi_get_drvdata(spi); \
    return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);

static void mcp251x_clean(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);

    if (priv->tx_skb || priv->tx_len)
        net->stats.tx_errors++;
    dev_kfree_skb(priv->tx_skb);
    if (priv->tx_len)
        can_free_echo_skb(priv->net, 0);
    priv->tx_skb = NULL;
    priv->tx_len = 0;
}

/* Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct spi_transfer t = {
        .tx_buf = priv->spi_tx_buf,
        .rx_buf = priv->spi_rx_buf,
        .len = len,
        .cs_change = 0,
    };
    struct spi_message m;
    int ret;

    spi_message_init(&m);
    spi_message_add_tail(&t, &m);

    ret = spi_sync(spi, &m);
    if (ret)
        dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
    return ret;
}

static int mcp251x_spi_write(struct spi_device *spi, int len)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    int ret;

    ret = spi_write(spi, priv->spi_tx_buf, len);
    if (ret)
        dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);

    return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 val = 0;

    priv->spi_tx_buf[0] = INSTRUCTION_READ;
    priv->spi_tx_buf[1] = reg;

    if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
        spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
    } else {
        mcp251x_spi_trans(spi, 3);
        val = priv->spi_rx_buf[2];
    }

    return val;
}

static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_READ;
    priv->spi_tx_buf[1] = reg;

    if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
        u8 val[2] = { 0 };

        spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
        *v1 = val[0];
        *v2 = val[1];
    } else {
        mcp251x_spi_trans(spi, 4);

        *v1 = priv->spi_rx_buf[2];
        *v2 = priv->spi_rx_buf[3];
    }
}

static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = val;

    mcp251x_spi_write(spi, 3);
}

static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = v1;
    priv->spi_tx_buf[3] = v2;

    mcp251x_spi_write(spi, 4);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
                   u8 mask, u8 val)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = mask;
    priv->spi_tx_buf[3] = val;

    mcp251x_spi_write(spi, 4);
}

static u8 mcp251x_read_stat(struct spi_device *spi)
{
    return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
}

#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
    readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
               delay_us, timeout_us)

#ifdef CONFIG_GPIOLIB
enum {
    MCP251X_GPIO_TX0RTS = 0,        /* inputs */
    MCP251X_GPIO_TX1RTS,
    MCP251X_GPIO_TX2RTS,
    MCP251X_GPIO_RX0BF,            /* outputs */
    MCP251X_GPIO_RX1BF,
};

#define MCP251X_GPIO_INPUT_MASK \
    GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
#define MCP251X_GPIO_OUTPUT_MASK \
    GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)

static const char * const mcp251x_gpio_names[] = {
    [MCP251X_GPIO_TX0RTS] = "TX0RTS",    /* inputs */
    [MCP251X_GPIO_TX1RTS] = "TX1RTS",
    [MCP251X_GPIO_TX2RTS] = "TX2RTS",
    [MCP251X_GPIO_RX0BF] = "RX0BF",        /* outputs */
    [MCP251X_GPIO_RX1BF] = "RX1BF",
};

static inline bool mcp251x_gpio_is_input(unsigned int offset)
{
    return offset <= MCP251X_GPIO_TX2RTS;
}

static int mcp251x_gpio_request(struct gpio_chip *chip,
                unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 val;

    /* nothing to be done for inputs */
    if (mcp251x_gpio_is_input(offset))
        return 0;

    val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl |= val;

    return 0;
}

static void mcp251x_gpio_free(struct gpio_chip *chip,
                  unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 val;

    /* nothing to be done for inputs */
    if (mcp251x_gpio_is_input(offset))
        return;

    val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~val;
}

static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
                      unsigned int offset)
{
    if (mcp251x_gpio_is_input(offset))
        return GPIOF_DIR_IN;

    return GPIOF_DIR_OUT;
}

static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 reg, mask, val;

    if (mcp251x_gpio_is_input(offset)) {
        reg = TXRTSCTRL;
        mask = TXRTSCTRL_RTS(offset);
    } else {
        reg = BFPCTRL;
        mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
    }

    mutex_lock(&priv->mcp_lock);
    val = mcp251x_read_reg(priv->spi, reg);
    mutex_unlock(&priv->mcp_lock);

    return !!(val & mask);
}

static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
                     unsigned long *maskp, unsigned long *bitsp)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    unsigned long bits = 0;
    u8 val;

    mutex_lock(&priv->mcp_lock);
    if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
        val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
        val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
        bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
    }
    if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
        val = mcp251x_read_reg(priv->spi, BFPCTRL);
        val = FIELD_GET(BFPCTRL_BFS_MASK, val);
        bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
    }
    mutex_unlock(&priv->mcp_lock);

    bitsp[0] = bits;
    return 0;
}

static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
                 int value)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 mask, val;

    mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
    val = value ? mask : 0;

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~mask;
    priv->reg_bfpctrl |= val;
}

static void
mcp251x_gpio_set_multiple(struct gpio_chip *chip,
              unsigned long *maskp, unsigned long *bitsp)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 mask, val;

    mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
    mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);

    val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
    val = FIELD_PREP(BFPCTRL_BFS_MASK, val);

    if (!mask)
        return;

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~mask;
    priv->reg_bfpctrl |= val;
}

static void mcp251x_gpio_restore(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
}

static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
    struct gpio_chip *gpio = &priv->gpio;

    if (!device_property_present(&priv->spi->dev, "gpio-controller"))
        return 0;

    /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
    gpio->label = priv->spi->modalias;
    gpio->parent = &priv->spi->dev;
    gpio->owner = THIS_MODULE;
    gpio->request = mcp251x_gpio_request;
    gpio->free = mcp251x_gpio_free;
    gpio->get_direction = mcp251x_gpio_get_direction;
    gpio->get = mcp251x_gpio_get;
    gpio->get_multiple = mcp251x_gpio_get_multiple;
    gpio->set = mcp251x_gpio_set;
    gpio->set_multiple = mcp251x_gpio_set_multiple;
    gpio->base = -1;
    gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
    gpio->names = mcp251x_gpio_names;
    gpio->can_sleep = true;
#ifdef CONFIG_OF_GPIO
    gpio->of_node = priv->spi->dev.of_node;
#endif

    return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
}
#else
static inline void mcp251x_gpio_restore(struct spi_device *spi)
{
}

static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
    return 0;
}
#endif

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
                int len, int tx_buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (mcp251x_is_2510(spi)) {
        int i;

        for (i = 1; i < TXBDAT_OFF + len; i++)
            mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
                      buf[i]);
    } else {
        memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
        mcp251x_spi_write(spi, TXBDAT_OFF + len);
    }
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
              int tx_buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u32 sid, eid, exide, rtr;
    u8 buf[SPI_TRANSFER_BUF_LEN];

    exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
    if (exide)
        sid = (frame->can_id & CAN_EFF_MASK) >> 18;
    else
        sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
    eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
    rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

    buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
    buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
    buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
        (exide << SIDL_EXIDE_SHIFT) |
        ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
    buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
    buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
    buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
    memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
    mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);

    /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
    priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
    mcp251x_spi_write(priv->spi, 1);
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
                int buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (mcp251x_is_2510(spi)) {
        int i, len;

        for (i = 1; i < RXBDAT_OFF; i++)
            buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);

        len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
        for (; i < (RXBDAT_OFF + len); i++)
            buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
    } else {
        priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
        if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
            spi_write_then_read(spi, priv->spi_tx_buf, 1,
                        priv->spi_rx_buf,
                        SPI_TRANSFER_BUF_LEN);
            memcpy(buf + 1, priv->spi_rx_buf,
                   SPI_TRANSFER_BUF_LEN - 1);
        } else {
            mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
            memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
        }
    }
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct sk_buff *skb;
    struct can_frame *frame;
    u8 buf[SPI_TRANSFER_BUF_LEN];

    skb = alloc_can_skb(priv->net, &frame);
    if (!skb) {
        dev_err(&spi->dev, "cannot allocate RX skb\n");
        priv->net->stats.rx_dropped++;
        return;
    }

    mcp251x_hw_rx_frame(spi, buf, buf_idx);
    if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
        /* Extended ID format */
        frame->can_id = CAN_EFF_FLAG;
        frame->can_id |=
            /* Extended ID part */
            SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
            SET_BYTE(buf[RXBEID8_OFF], 1) |
            SET_BYTE(buf[RXBEID0_OFF], 0) |
            /* Standard ID part */
            (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
              (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
        /* Remote transmission request */
        if (buf[RXBDLC_OFF] & RXBDLC_RTR)
            frame->can_id |= CAN_RTR_FLAG;
    } else {
        /* Standard ID format */
        frame->can_id =
            (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
            (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
        if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
            frame->can_id |= CAN_RTR_FLAG;
    }
    /* Data length */
    frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
    memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

    priv->net->stats.rx_packets++;
    priv->net->stats.rx_bytes += frame->can_dlc;

    can_led_event(priv->net, CAN_LED_EVENT_RX);

    netif_rx_ni(skb);
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
    mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

/* May only be called when device is sleeping! */
static int mcp251x_hw_wake(struct spi_device *spi)
{
    u8 value;
    int ret;

    /* Force wakeup interrupt to wake device, but don't execute IST */
    disable_irq(spi->irq);
    mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);

    /* Wait for oscillator startup timer after wake up */
    mdelay(MCP251X_OST_DELAY_MS);

    /* Put device into config mode */
    mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);

    /* Wait for the device to enter config mode */
    ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
                         MCP251X_OST_DELAY_MS * 1000,
                         USEC_PER_SEC);
    if (ret) {
        dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
        return ret;
    }

    /* Disable and clear pending interrupts */
    mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
    enable_irq(spi->irq);

    return 0;
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
                       struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;

    if (priv->tx_skb || priv->tx_len) {
        dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
        return NETDEV_TX_BUSY;
    }

    if (can_dropped_invalid_skb(net, skb))
        return NETDEV_TX_OK;

    netif_stop_queue(net);
    priv->tx_skb = skb;
    queue_work(priv->wq, &priv->tx_work);

    return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
    struct mcp251x_priv *priv = netdev_priv(net);

    switch (mode) {
    case CAN_MODE_START:
        mcp251x_clean(net);
        /* We have to delay work since SPI I/O may sleep */
        priv->can.state = CAN_STATE_ERROR_ACTIVE;
        priv->restart_tx = 1;
        if (priv->can.restart_ms == 0)
            priv->after_suspend = AFTER_SUSPEND_RESTART;
        queue_work(priv->wq, &priv->restart_work);
        break;
    default:
        return -EOPNOTSUPP;
    }

    return 0;
}

static int mcp251x_set_normal_mode(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 value;
    int ret;

    /* Enable interrupts */
    mcp251x_write_reg(spi, CANINTE,
              CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
              CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);

    if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
        /* Put device into loopback mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
    } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
        /* Put device into listen-only mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
    } else {
        /* Put device into normal mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);

        /* Wait for the device to enter normal mode */
        ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
                             MCP251X_OST_DELAY_MS * 1000,
                             USEC_PER_SEC);
        if (ret) {
            dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
            return ret;
        }
    }
    priv->can.state = CAN_STATE_ERROR_ACTIVE;
    return 0;
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct can_bittiming *bt = &priv->can.bittiming;
    struct spi_device *spi = priv->spi;

    mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
              (bt->brp - 1));
    mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
              (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
               CNF2_SAM : 0) |
              ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
              (bt->prop_seg - 1));
    mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
               (bt->phase_seg2 - 1));
    dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
        mcp251x_read_reg(spi, CNF1),
        mcp251x_read_reg(spi, CNF2),
        mcp251x_read_reg(spi, CNF3));

    return 0;
}

static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
{
    mcp251x_do_set_bittiming(net);

    mcp251x_write_reg(spi, RXBCTRL(0),
              RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
    mcp251x_write_reg(spi, RXBCTRL(1),
              RXBCTRL_RXM0 | RXBCTRL_RXM1);
    return 0;
}

static int mcp251x_hw_reset(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 value;
    int ret;

    /* Wait for oscillator startup timer after power up */
    mdelay(MCP251X_OST_DELAY_MS);

    priv->spi_tx_buf[0] = INSTRUCTION_RESET;
    ret = mcp251x_spi_write(spi, 1);
    if (ret)
        return ret;

    /* Wait for oscillator startup timer after reset */
    mdelay(MCP251X_OST_DELAY_MS);

    /* Wait for reset to finish */
    ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
                         MCP251X_OST_DELAY_MS * 1000,
                         USEC_PER_SEC);
    if (ret)
        dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
    return ret;
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
    u8 ctrl;
    int ret;

    ret = mcp251x_hw_reset(spi);
    if (ret)
        return ret;

    ctrl = mcp251x_read_reg(spi, CANCTRL);

    dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);

    /* Check for power up default value */
    if ((ctrl & 0x17) != 0x07)
        return -ENODEV;

    return 0;
}

static int mcp251x_power_enable(struct regulator *reg, int enable)
{
    if (IS_ERR_OR_NULL(reg))
        return 0;

    if (enable)
        return regulator_enable(reg);
    else
        return regulator_disable(reg);
}

static int mcp251x_stop(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;

    close_candev(net);

    priv->force_quit = 1;
    free_irq(spi->irq, priv);

    mutex_lock(&priv->mcp_lock);

    /* Disable and clear pending interrupts */
    mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);

    mcp251x_write_reg(spi, TXBCTRL(0), 0);
    mcp251x_clean(net);

    mcp251x_hw_sleep(spi);

    mcp251x_power_enable(priv->transceiver, 0);

    priv->can.state = CAN_STATE_STOPPED;

    mutex_unlock(&priv->mcp_lock);

    can_led_event(net, CAN_LED_EVENT_STOP);

    return 0;
}

static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
    struct sk_buff *skb;
    struct can_frame *frame;

    skb = alloc_can_err_skb(net, &frame);
    if (skb) {
        frame->can_id |= can_id;
        frame->data[1] = data1;
        netif_rx_ni(skb);
    } else {
        netdev_err(net, "cannot allocate error skb\n");
    }
}

static void mcp251x_tx_work_handler(struct work_struct *ws)
{
    struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
                         tx_work);
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;
    struct can_frame *frame;

    mutex_lock(&priv->mcp_lock);
    if (priv->tx_skb) {
        if (priv->can.state == CAN_STATE_BUS_OFF) {
            mcp251x_clean(net);
        } else {
            frame = (struct can_frame *)priv->tx_skb->data;

            if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
                frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
            mcp251x_hw_tx(spi, frame, 0);
            priv->tx_len = 1 + frame->can_dlc;
            can_put_echo_skb(priv->tx_skb, net, 0);
            priv->tx_skb = NULL;
        }
    }
    mutex_unlock(&priv->mcp_lock);
}

static void mcp251x_restart_work_handler(struct work_struct *ws)
{
    struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
                         restart_work);
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;

    mutex_lock(&priv->mcp_lock);
    if (priv->after_suspend) {
        if (priv->after_suspend & AFTER_SUSPEND_POWER) {
            mcp251x_hw_reset(spi);
            mcp251x_setup(net, spi);
            mcp251x_gpio_restore(spi);
        } else {
            mcp251x_hw_wake(spi);
        }
        priv->force_quit = 0;
        if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
            mcp251x_set_normal_mode(spi);
        } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
            netif_device_attach(net);
            mcp251x_clean(net);
            mcp251x_set_normal_mode(spi);
            netif_wake_queue(net);
        } else {
            mcp251x_hw_sleep(spi);
        }
        priv->after_suspend = 0;
    }

    if (priv->restart_tx) {
        priv->restart_tx = 0;
        mcp251x_write_reg(spi, TXBCTRL(0), 0);
        mcp251x_clean(net);
        netif_wake_queue(net);
        mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
    }
    mutex_unlock(&priv->mcp_lock);
}

static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
    struct mcp251x_priv *priv = dev_id;
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;

    mutex_lock(&priv->mcp_lock);
    while (!priv->force_quit) {
        enum can_state new_state;
        u8 intf, eflag;
        u8 clear_intf = 0;
        int can_id = 0, data1 = 0;

        mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

        /* mask out flags we don't care about */
        intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

        /* receive buffer 0 */
        if (intf & CANINTF_RX0IF) {
            mcp251x_hw_rx(spi, 0);
            /* Free one buffer ASAP
             * (The MCP2515/25625 does this automatically.)
             */
            if (mcp251x_is_2510(spi))
                mcp251x_write_bits(spi, CANINTF,
                           CANINTF_RX0IF, 0x00);
        }

        /* receive buffer 1 */
        if (intf & CANINTF_RX1IF) {
            mcp251x_hw_rx(spi, 1);
            /* The MCP2515/25625 does this automatically. */
            if (mcp251x_is_2510(spi))
                clear_intf |= CANINTF_RX1IF;
        }

        /* any error or tx interrupt we need to clear? */
        if (intf & (CANINTF_ERR | CANINTF_TX))
            clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
        if (clear_intf)
            mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);

        if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
            mcp251x_write_bits(spi, EFLG, eflag, 0x00);

        /* Update can state */
        if (eflag & EFLG_TXBO) {
            new_state = CAN_STATE_BUS_OFF;
            can_id |= CAN_ERR_BUSOFF;
        } else if (eflag & EFLG_TXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_PASSIVE;
        } else if (eflag & EFLG_RXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_PASSIVE;
        } else if (eflag & EFLG_TXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_WARNING;
        } else if (eflag & EFLG_RXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_WARNING;
        } else {
            new_state = CAN_STATE_ERROR_ACTIVE;
        }

        /* Update can state statistics */
        switch (priv->can.state) {
        case CAN_STATE_ERROR_ACTIVE:
            if (new_state >= CAN_STATE_ERROR_WARNING &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_warning++;

        case CAN_STATE_ERROR_WARNING:
            if (new_state >= CAN_STATE_ERROR_PASSIVE &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_passive++;
            break;
        default:
            break;
        }
        priv->can.state = new_state;

        if (intf & CANINTF_ERRIF) {
            /* Handle overflow counters */
            if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
                if (eflag & EFLG_RX0OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                if (eflag & EFLG_RX1OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                can_id |= CAN_ERR_CRTL;
                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
            }
            mcp251x_error_skb(net, can_id, data1);
        }

        if (priv->can.state == CAN_STATE_BUS_OFF) {
            if (priv->can.restart_ms == 0) {
                priv->force_quit = 1;
                priv->can.can_stats.bus_off++;
                can_bus_off(net);
                mcp251x_hw_sleep(spi);
                break;
            }
        }

        if (intf == 0)
            break;

        if (intf & CANINTF_TX) {
            net->stats.tx_packets++;
            net->stats.tx_bytes += priv->tx_len - 1;
            can_led_event(net, CAN_LED_EVENT_TX);
            if (priv->tx_len) {
                can_get_echo_skb(net, 0);
                priv->tx_len = 0;
            }
            netif_wake_queue(net);
        }
    }
    mutex_unlock(&priv->mcp_lock);
    return IRQ_HANDLED;
}

static int mcp251x_open(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;
    unsigned long flags = 0;
    int ret;

    ret = open_candev(net);
    if (ret) {
        dev_err(&spi->dev, "unable to set initial baudrate!\n");
        return ret;
    }

    mutex_lock(&priv->mcp_lock);
    mcp251x_power_enable(priv->transceiver, 1);

    priv->force_quit = 0;
    priv->tx_skb = NULL;
    priv->tx_len = 0;

    if (!dev_fwnode(&spi->dev))
        flags = IRQF_TRIGGER_FALLING;

    ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
                   flags | IRQF_ONESHOT, dev_name(&spi->dev),
                   priv);
    if (ret) {
        dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
        goto out_close;
    }

    ret = mcp251x_hw_wake(spi);
    if (ret)
        goto out_free_irq;
    ret = mcp251x_setup(net, spi);
    if (ret)
        goto out_free_irq;
    ret = mcp251x_set_normal_mode(spi);
    if (ret)
        goto out_free_irq;

    can_led_event(net, CAN_LED_EVENT_OPEN);

    netif_wake_queue(net);
    mutex_unlock(&priv->mcp_lock);

    return 0;

out_free_irq:
    free_irq(spi->irq, priv);
    mcp251x_hw_sleep(spi);
out_close:
    mcp251x_power_enable(priv->transceiver, 0);
    close_candev(net);
    mutex_unlock(&priv->mcp_lock);
    return ret;
}

static const struct net_device_ops mcp251x_netdev_ops = {
    .ndo_open = mcp251x_open,
    .ndo_stop = mcp251x_stop,
    .ndo_start_xmit = mcp251x_hard_start_xmit,
    .ndo_change_mtu = can_change_mtu,
};

static const struct of_device_id mcp251x_of_match[] = {
    {
        .compatible    = "microchip,mcp2510",
        .data        = (void *)CAN_MCP251X_MCP2510,
    },
    {
        .compatible    = "microchip,mcp2515",
        .data        = (void *)CAN_MCP251X_MCP2515,
    },
    {
        .compatible    = "microchip,mcp25625",
        .data        = (void *)CAN_MCP251X_MCP25625,
    },
    { }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
    {
        .name        = "mcp2510",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2510,
    },
    {
        .name        = "mcp2515",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2515,
    },
    {
        .name        = "mcp25625",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP25625,
    },
    { }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

static int mcp251x_can_probe(struct spi_device *spi)
{
    const void *match = device_get_match_data(&spi->dev);
    struct net_device *net;
    struct mcp251x_priv *priv;
    struct clk *clk;
    u32 freq;
    int ret;

    clk = devm_clk_get_optional(&spi->dev, NULL);
    if (IS_ERR(clk))
        return PTR_ERR(clk);

    freq = clk_get_rate(clk);
    if (freq == 0)
        device_property_read_u32(&spi->dev, "clock-frequency", &freq);

    /* Sanity check */
    if (freq < 1000000 || freq > 25000000)
        return -ERANGE;

    /* Allocate can/net device */
    net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
    if (!net)
        return -ENOMEM;

    ret = clk_prepare_enable(clk);
    if (ret)
        goto out_free;

    net->netdev_ops = &mcp251x_netdev_ops;
    net->flags |= IFF_ECHO;

    priv = netdev_priv(net);
    priv->can.bittiming_const = &mcp251x_bittiming_const;
    priv->can.do_set_mode = mcp251x_do_set_mode;
    priv->can.clock.freq = freq / 2;
    priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
        CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
    if (match)
        priv->model = (enum mcp251x_model)match;
    else
        priv->model = spi_get_device_id(spi)->driver_data;
    priv->net = net;
    priv->clk = clk;

    spi_set_drvdata(spi, priv);

    /* Configure the SPI bus */
    spi->bits_per_word = 8;
    if (mcp251x_is_2510(spi))
        spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
    else
        spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
    ret = spi_setup(spi);
    if (ret)
        goto out_clk;

    priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
    priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
    if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
        (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
        ret = -EPROBE_DEFER;
        goto out_clk;
    }

    ret = mcp251x_power_enable(priv->power, 1);
    if (ret)
        goto out_clk;

    priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
                   0);
    if (!priv->wq) {
        ret = -ENOMEM;
        goto out_clk;
    }
    INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
    INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

    priv->spi = spi;
    mutex_init(&priv->mcp_lock);

    priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
                    GFP_KERNEL);
    if (!priv->spi_tx_buf) {
        ret = -ENOMEM;
        goto error_probe;
    }

    priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
                    GFP_KERNEL);
    if (!priv->spi_rx_buf) {
        ret = -ENOMEM;
        goto error_probe;
    }

    SET_NETDEV_DEV(net, &spi->dev);

    /* Here is OK to not lock the MCP, no one knows about it yet */
    ret = mcp251x_hw_probe(spi);
    if (ret) {
        if (ret == -ENODEV)
            dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
                priv->model);
        goto error_probe;
    }

    mcp251x_hw_sleep(spi);

    ret = register_candev(net);
    if (ret)
        goto error_probe;

    devm_can_led_init(net);

    ret = mcp251x_gpio_setup(priv);
    if (ret)
        goto error_probe;

    netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
    return 0;

error_probe:
    destroy_workqueue(priv->wq);
    priv->wq = NULL;
    mcp251x_power_enable(priv->power, 0);

out_clk:
    clk_disable_unprepare(clk);

out_free:
    free_candev(net);

    dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
    return ret;
}

static int mcp251x_can_remove(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct net_device *net = priv->net;

    unregister_candev(net);

    mcp251x_power_enable(priv->power, 0);

    destroy_workqueue(priv->wq);
    priv->wq = NULL;

    clk_disable_unprepare(priv->clk);

    free_candev(net);

    return 0;
}

static int __maybe_unused mcp251x_can_suspend(struct device *dev)
{
    struct spi_device *spi = to_spi_device(dev);
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct net_device *net = priv->net;

    priv->force_quit = 1;
    disable_irq(spi->irq);
    /* Note: at this point neither IST nor workqueues are running.
     * open/stop cannot be called anyway so locking is not needed
     */
    if (netif_running(net)) {
        netif_device_detach(net);

        mcp251x_hw_sleep(spi);
        mcp251x_power_enable(priv->transceiver, 0);
        priv->after_suspend = AFTER_SUSPEND_UP;
    } else {
        priv->after_suspend = AFTER_SUSPEND_DOWN;
    }

    mcp251x_power_enable(priv->power, 0);
    priv->after_suspend |= AFTER_SUSPEND_POWER;

    return 0;
}

static int __maybe_unused mcp251x_can_resume(struct device *dev)
{
    struct spi_device *spi = to_spi_device(dev);
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (priv->after_suspend & AFTER_SUSPEND_POWER)
        mcp251x_power_enable(priv->power, 1);
    if (priv->after_suspend & AFTER_SUSPEND_UP)
        mcp251x_power_enable(priv->transceiver, 1);

    if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
        queue_work(priv->wq, &priv->restart_work);
    else
        priv->after_suspend = 0;

    priv->force_quit = 0;
    enable_irq(spi->irq);
    return 0;
}

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
    mcp251x_can_resume);

static struct spi_driver mcp251x_can_driver = {
    .driver = {
        .name = DEVICE_NAME,
        .of_match_table = mcp251x_of_match,
        .pm = &mcp251x_can_pm_ops,
    },
    .id_table = mcp251x_id_table,
    .probe = mcp251x_can_probe,
    .remove = mcp251x_can_remove,
};
module_spi_driver(mcp251x_can_driver);

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
          "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
MODULE_LICENSE("GPL v2");// SPDX-License-Identifier: GPL-2.0-only
/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
 *
 * MCP2510 support and bug fixes by Christian Pellegrin
 * <chripell@evolware.org>
 *
 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
 *
 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
 * Written under contract by:
 *   Chris Elston, Katalix Systems, Ltd.
 *
 * Based on Microchip MCP251x CAN controller driver written by
 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
 *
 * Based on CAN bus driver for the CCAN controller written by
 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
 * - Simon Kallweit, intefo AG
 * Copyright 2007
 */

#include <linux/bitfield.h>
#include <linux/can/core.h>
#include <linux/can/dev.h>
#include <linux/can/led.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/gpio.h>
#include <linux/gpio/driver.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>

/* SPI interface instruction set */
#define INSTRUCTION_WRITE    0x02
#define INSTRUCTION_READ    0x03
#define INSTRUCTION_BIT_MODIFY    0x05
#define INSTRUCTION_LOAD_TXB(n)    (0x40 + 2 * (n))
#define INSTRUCTION_READ_RXB(n)    (((n) == 0) ? 0x90 : 0x94)
#define INSTRUCTION_RESET    0xC0
#define RTS_TXB0        0x01
#define RTS_TXB1        0x02
#define RTS_TXB2        0x04
#define INSTRUCTION_RTS(n)    (0x80 | ((n) & 0x07))

/* MPC251x registers */
#define BFPCTRL            0x0c
#  define BFPCTRL_B0BFM        BIT(0)
#  define BFPCTRL_B1BFM        BIT(1)
#  define BFPCTRL_BFM(n)    (BFPCTRL_B0BFM << (n))
#  define BFPCTRL_BFM_MASK    GENMASK(1, 0)
#  define BFPCTRL_B0BFE        BIT(2)
#  define BFPCTRL_B1BFE        BIT(3)
#  define BFPCTRL_BFE(n)    (BFPCTRL_B0BFE << (n))
#  define BFPCTRL_BFE_MASK    GENMASK(3, 2)
#  define BFPCTRL_B0BFS        BIT(4)
#  define BFPCTRL_B1BFS        BIT(5)
#  define BFPCTRL_BFS(n)    (BFPCTRL_B0BFS << (n))
#  define BFPCTRL_BFS_MASK    GENMASK(5, 4)
#define TXRTSCTRL        0x0d
#  define TXRTSCTRL_B0RTSM    BIT(0)
#  define TXRTSCTRL_B1RTSM    BIT(1)
#  define TXRTSCTRL_B2RTSM    BIT(2)
#  define TXRTSCTRL_RTSM(n)    (TXRTSCTRL_B0RTSM << (n))
#  define TXRTSCTRL_RTSM_MASK    GENMASK(2, 0)
#  define TXRTSCTRL_B0RTS    BIT(3)
#  define TXRTSCTRL_B1RTS    BIT(4)
#  define TXRTSCTRL_B2RTS    BIT(5)
#  define TXRTSCTRL_RTS(n)    (TXRTSCTRL_B0RTS << (n))
#  define TXRTSCTRL_RTS_MASK    GENMASK(5, 3)
#define CANSTAT          0x0e
#define CANCTRL          0x0f
#  define CANCTRL_REQOP_MASK        0xe0
#  define CANCTRL_REQOP_CONF        0x80
#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
#  define CANCTRL_REQOP_LOOPBACK    0x40
#  define CANCTRL_REQOP_SLEEP        0x20
#  define CANCTRL_REQOP_NORMAL        0x00
#  define CANCTRL_OSM            0x08
#  define CANCTRL_ABAT            0x10
#define TEC          0x1c
#define REC          0x1d
#define CNF1          0x2a
#  define CNF1_SJW_SHIFT   6
#define CNF2          0x29
#  define CNF2_BTLMODE       0x80
#  define CNF2_SAM         0x40
#  define CNF2_PS1_SHIFT   3
#define CNF3          0x28
#  define CNF3_SOF       0x08
#  define CNF3_WAKFIL       0x04
#  define CNF3_PHSEG2_MASK 0x07
#define CANINTE          0x2b
#  define CANINTE_MERRE 0x80
#  define CANINTE_WAKIE 0x40
#  define CANINTE_ERRIE 0x20
#  define CANINTE_TX2IE 0x10
#  define CANINTE_TX1IE 0x08
#  define CANINTE_TX0IE 0x04
#  define CANINTE_RX1IE 0x02
#  define CANINTE_RX0IE 0x01
#define CANINTF          0x2c
#  define CANINTF_MERRF 0x80
#  define CANINTF_WAKIF 0x40
#  define CANINTF_ERRIF 0x20
#  define CANINTF_TX2IF 0x10
#  define CANINTF_TX1IF 0x08
#  define CANINTF_TX0IF 0x04
#  define CANINTF_RX1IF 0x02
#  define CANINTF_RX0IF 0x01
#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
#  define CANINTF_ERR (CANINTF_ERRIF)
#define EFLG          0x2d
#  define EFLG_EWARN    0x01
#  define EFLG_RXWAR    0x02
#  define EFLG_TXWAR    0x04
#  define EFLG_RXEP    0x08
#  define EFLG_TXEP    0x10
#  define EFLG_TXBO    0x20
#  define EFLG_RX0OVR    0x40
#  define EFLG_RX1OVR    0x80
#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
#  define TXBCTRL_ABTF    0x40
#  define TXBCTRL_MLOA    0x20
#  define TXBCTRL_TXERR 0x10
#  define TXBCTRL_TXREQ 0x08
#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
#  define SIDH_SHIFT    3
#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
#  define SIDL_SID_MASK    7
#  define SIDL_SID_SHIFT   5
#  define SIDL_EXIDE_SHIFT 3
#  define SIDL_EID_SHIFT   16
#  define SIDL_EID_MASK    3
#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
#  define DLC_RTR_SHIFT    6
#define TXBCTRL_OFF 0
#define TXBSIDH_OFF 1
#define TXBSIDL_OFF 2
#define TXBEID8_OFF 3
#define TXBEID0_OFF 4
#define TXBDLC_OFF  5
#define TXBDAT_OFF  6
#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
#  define RXBCTRL_BUKT    0x04
#  define RXBCTRL_RXM0    0x20
#  define RXBCTRL_RXM1    0x40
#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
#  define RXBSIDH_SHIFT 3
#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
#  define RXBSIDL_IDE   0x08
#  define RXBSIDL_SRR   0x10
#  define RXBSIDL_EID   3
#  define RXBSIDL_SHIFT 5
#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
#  define RXBDLC_LEN_MASK  0x0f
#  define RXBDLC_RTR       0x40
#define RXBCTRL_OFF 0
#define RXBSIDH_OFF 1
#define RXBSIDL_OFF 2
#define RXBEID8_OFF 3
#define RXBEID0_OFF 4
#define RXBDLC_OFF  5
#define RXBDAT_OFF  6
#define RXFSID(n) ((n < 3) ? 0 : 4)
#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
#define RXMSIDH(n) ((n) * 4 + 0x20)
#define RXMSIDL(n) ((n) * 4 + 0x21)
#define RXMEID8(n) ((n) * 4 + 0x22)
#define RXMEID0(n) ((n) * 4 + 0x23)

#define GET_BYTE(val, byte)            \
    (((val) >> ((byte) * 8)) & 0xff)
#define SET_BYTE(val, byte)            \
    (((val) & 0xff) << ((byte) * 8))

/* Buffer size required for the largest SPI transfer (i.e., reading a
 * frame)
 */
#define CAN_FRAME_MAX_DATA_LEN    8
#define SPI_TRANSFER_BUF_LEN    (6 + CAN_FRAME_MAX_DATA_LEN)
#define CAN_FRAME_MAX_BITS    128

#define TX_ECHO_SKB_MAX    1

#define MCP251X_OST_DELAY_MS    (5)

#define DEVICE_NAME "mcp251x"

static const struct can_bittiming_const mcp251x_bittiming_const = {
    .name = DEVICE_NAME,
    .tseg1_min = 3,
    .tseg1_max = 16,
    .tseg2_min = 2,
    .tseg2_max = 8,
    .sjw_max = 4,
    .brp_min = 1,
    .brp_max = 64,
    .brp_inc = 1,
};

enum mcp251x_model {
    CAN_MCP251X_MCP2510    = 0x2510,
    CAN_MCP251X_MCP2515    = 0x2515,
    CAN_MCP251X_MCP25625    = 0x25625,
};

struct mcp251x_priv {
    struct can_priv       can;
    struct net_device *net;
    struct spi_device *spi;
    enum mcp251x_model model;

    struct mutex mcp_lock; /* SPI device lock */

    u8 *spi_tx_buf;
    u8 *spi_rx_buf;

    struct sk_buff *tx_skb;
    int tx_len;

    struct workqueue_struct *wq;
    struct work_struct tx_work;
    struct work_struct restart_work;

    int force_quit;
    int after_suspend;
#define AFTER_SUSPEND_UP 1
#define AFTER_SUSPEND_DOWN 2
#define AFTER_SUSPEND_POWER 4
#define AFTER_SUSPEND_RESTART 8
    int restart_tx;
    struct regulator *power;
    struct regulator *transceiver;
    struct clk *clk;
#ifdef CONFIG_GPIOLIB
    struct gpio_chip gpio;
    u8 reg_bfpctrl;
#endif
};

#define MCP251X_IS(_model) \
static inline int mcp251x_is_##_model(struct spi_device *spi) \
{ \
    struct mcp251x_priv *priv = spi_get_drvdata(spi); \
    return priv->model == CAN_MCP251X_MCP##_model; \
}

MCP251X_IS(2510);

static void mcp251x_clean(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);

    if (priv->tx_skb || priv->tx_len)
        net->stats.tx_errors++;
    dev_kfree_skb(priv->tx_skb);
    if (priv->tx_len)
        can_free_echo_skb(priv->net, 0);
    priv->tx_skb = NULL;
    priv->tx_len = 0;
}

/* Note about handling of error return of mcp251x_spi_trans: accessing
 * registers via SPI is not really different conceptually than using
 * normal I/O assembler instructions, although it's much more
 * complicated from a practical POV. So it's not advisable to always
 * check the return value of this function. Imagine that every
 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 * error();", it would be a great mess (well there are some situation
 * when exception handling C++ like could be useful after all). So we
 * just check that transfers are OK at the beginning of our
 * conversation with the chip and to avoid doing really nasty things
 * (like injecting bogus packets in the network stack).
 */
static int mcp251x_spi_trans(struct spi_device *spi, int len)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct spi_transfer t = {
        .tx_buf = priv->spi_tx_buf,
        .rx_buf = priv->spi_rx_buf,
        .len = len,
        .cs_change = 0,
    };
    struct spi_message m;
    int ret;

    spi_message_init(&m);
    spi_message_add_tail(&t, &m);

    ret = spi_sync(spi, &m);
    if (ret)
        dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
    return ret;
}

static int mcp251x_spi_write(struct spi_device *spi, int len)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    int ret;

    ret = spi_write(spi, priv->spi_tx_buf, len);
    if (ret)
        dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);

    return ret;
}

static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 val = 0;

    priv->spi_tx_buf[0] = INSTRUCTION_READ;
    priv->spi_tx_buf[1] = reg;

    if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
        spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
    } else {
        mcp251x_spi_trans(spi, 3);
        val = priv->spi_rx_buf[2];
    }

    return val;
}

static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_READ;
    priv->spi_tx_buf[1] = reg;

    if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
        u8 val[2] = { 0 };

        spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
        *v1 = val[0];
        *v2 = val[1];
    } else {
        mcp251x_spi_trans(spi, 4);

        *v1 = priv->spi_rx_buf[2];
        *v2 = priv->spi_rx_buf[3];
    }
}

static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = val;

    mcp251x_spi_write(spi, 3);
}

static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = v1;
    priv->spi_tx_buf[3] = v2;

    mcp251x_spi_write(spi, 4);
}

static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
                   u8 mask, u8 val)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
    priv->spi_tx_buf[1] = reg;
    priv->spi_tx_buf[2] = mask;
    priv->spi_tx_buf[3] = val;

    mcp251x_spi_write(spi, 4);
}

static u8 mcp251x_read_stat(struct spi_device *spi)
{
    return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
}

#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
    readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
               delay_us, timeout_us)

#ifdef CONFIG_GPIOLIB
enum {
    MCP251X_GPIO_TX0RTS = 0,        /* inputs */
    MCP251X_GPIO_TX1RTS,
    MCP251X_GPIO_TX2RTS,
    MCP251X_GPIO_RX0BF,            /* outputs */
    MCP251X_GPIO_RX1BF,
};

#define MCP251X_GPIO_INPUT_MASK \
    GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
#define MCP251X_GPIO_OUTPUT_MASK \
    GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)

static const char * const mcp251x_gpio_names[] = {
    [MCP251X_GPIO_TX0RTS] = "TX0RTS",    /* inputs */
    [MCP251X_GPIO_TX1RTS] = "TX1RTS",
    [MCP251X_GPIO_TX2RTS] = "TX2RTS",
    [MCP251X_GPIO_RX0BF] = "RX0BF",        /* outputs */
    [MCP251X_GPIO_RX1BF] = "RX1BF",
};

static inline bool mcp251x_gpio_is_input(unsigned int offset)
{
    return offset <= MCP251X_GPIO_TX2RTS;
}

static int mcp251x_gpio_request(struct gpio_chip *chip,
                unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 val;

    /* nothing to be done for inputs */
    if (mcp251x_gpio_is_input(offset))
        return 0;

    val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl |= val;

    return 0;
}

static void mcp251x_gpio_free(struct gpio_chip *chip,
                  unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 val;

    /* nothing to be done for inputs */
    if (mcp251x_gpio_is_input(offset))
        return;

    val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~val;
}

static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
                      unsigned int offset)
{
    if (mcp251x_gpio_is_input(offset))
        return GPIOF_DIR_IN;

    return GPIOF_DIR_OUT;
}

static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 reg, mask, val;

    if (mcp251x_gpio_is_input(offset)) {
        reg = TXRTSCTRL;
        mask = TXRTSCTRL_RTS(offset);
    } else {
        reg = BFPCTRL;
        mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
    }

    mutex_lock(&priv->mcp_lock);
    val = mcp251x_read_reg(priv->spi, reg);
    mutex_unlock(&priv->mcp_lock);

    return !!(val & mask);
}

static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
                     unsigned long *maskp, unsigned long *bitsp)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    unsigned long bits = 0;
    u8 val;

    mutex_lock(&priv->mcp_lock);
    if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
        val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
        val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
        bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
    }
    if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
        val = mcp251x_read_reg(priv->spi, BFPCTRL);
        val = FIELD_GET(BFPCTRL_BFS_MASK, val);
        bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
    }
    mutex_unlock(&priv->mcp_lock);

    bitsp[0] = bits;
    return 0;
}

static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
                 int value)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 mask, val;

    mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
    val = value ? mask : 0;

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~mask;
    priv->reg_bfpctrl |= val;
}

static void
mcp251x_gpio_set_multiple(struct gpio_chip *chip,
              unsigned long *maskp, unsigned long *bitsp)
{
    struct mcp251x_priv *priv = gpiochip_get_data(chip);
    u8 mask, val;

    mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
    mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);

    val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
    val = FIELD_PREP(BFPCTRL_BFS_MASK, val);

    if (!mask)
        return;

    mutex_lock(&priv->mcp_lock);
    mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
    mutex_unlock(&priv->mcp_lock);

    priv->reg_bfpctrl &= ~mask;
    priv->reg_bfpctrl |= val;
}

static void mcp251x_gpio_restore(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
}

static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
    struct gpio_chip *gpio = &priv->gpio;

    if (!device_property_present(&priv->spi->dev, "gpio-controller"))
        return 0;

    /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
    gpio->label = priv->spi->modalias;
    gpio->parent = &priv->spi->dev;
    gpio->owner = THIS_MODULE;
    gpio->request = mcp251x_gpio_request;
    gpio->free = mcp251x_gpio_free;
    gpio->get_direction = mcp251x_gpio_get_direction;
    gpio->get = mcp251x_gpio_get;
    gpio->get_multiple = mcp251x_gpio_get_multiple;
    gpio->set = mcp251x_gpio_set;
    gpio->set_multiple = mcp251x_gpio_set_multiple;
    gpio->base = -1;
    gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
    gpio->names = mcp251x_gpio_names;
    gpio->can_sleep = true;
#ifdef CONFIG_OF_GPIO
    gpio->of_node = priv->spi->dev.of_node;
#endif

    return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
}
#else
static inline void mcp251x_gpio_restore(struct spi_device *spi)
{
}

static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
{
    return 0;
}
#endif

static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
                int len, int tx_buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (mcp251x_is_2510(spi)) {
        int i;

        for (i = 1; i < TXBDAT_OFF + len; i++)
            mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
                      buf[i]);
    } else {
        memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
        mcp251x_spi_write(spi, TXBDAT_OFF + len);
    }
}

static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
              int tx_buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u32 sid, eid, exide, rtr;
    u8 buf[SPI_TRANSFER_BUF_LEN];

    exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
    if (exide)
        sid = (frame->can_id & CAN_EFF_MASK) >> 18;
    else
        sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
    eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
    rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */

    buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
    buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
    buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
        (exide << SIDL_EXIDE_SHIFT) |
        ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
    buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
    buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
    buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
    memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
    mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);

    /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
    priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
    mcp251x_spi_write(priv->spi, 1);
}

static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
                int buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (mcp251x_is_2510(spi)) {
        int i, len;

        for (i = 1; i < RXBDAT_OFF; i++)
            buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);

        len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
        for (; i < (RXBDAT_OFF + len); i++)
            buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
    } else {
        priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
        if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
            spi_write_then_read(spi, priv->spi_tx_buf, 1,
                        priv->spi_rx_buf,
                        SPI_TRANSFER_BUF_LEN);
            memcpy(buf + 1, priv->spi_rx_buf,
                   SPI_TRANSFER_BUF_LEN - 1);
        } else {
            mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
            memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
        }
    }
}

static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct sk_buff *skb;
    struct can_frame *frame;
    u8 buf[SPI_TRANSFER_BUF_LEN];

    skb = alloc_can_skb(priv->net, &frame);
    if (!skb) {
        dev_err(&spi->dev, "cannot allocate RX skb\n");
        priv->net->stats.rx_dropped++;
        return;
    }

    mcp251x_hw_rx_frame(spi, buf, buf_idx);
    if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
        /* Extended ID format */
        frame->can_id = CAN_EFF_FLAG;
        frame->can_id |=
            /* Extended ID part */
            SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
            SET_BYTE(buf[RXBEID8_OFF], 1) |
            SET_BYTE(buf[RXBEID0_OFF], 0) |
            /* Standard ID part */
            (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
              (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
        /* Remote transmission request */
        if (buf[RXBDLC_OFF] & RXBDLC_RTR)
            frame->can_id |= CAN_RTR_FLAG;
    } else {
        /* Standard ID format */
        frame->can_id =
            (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
            (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
        if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
            frame->can_id |= CAN_RTR_FLAG;
    }
    /* Data length */
    frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
    memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);

    priv->net->stats.rx_packets++;
    priv->net->stats.rx_bytes += frame->can_dlc;

    can_led_event(priv->net, CAN_LED_EVENT_RX);

    netif_rx_ni(skb);
}

static void mcp251x_hw_sleep(struct spi_device *spi)
{
    mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
}

/* May only be called when device is sleeping! */
static int mcp251x_hw_wake(struct spi_device *spi)
{
    u8 value;
    int ret;

    /* Force wakeup interrupt to wake device, but don't execute IST */
    disable_irq(spi->irq);
    mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);

    /* Wait for oscillator startup timer after wake up */
    mdelay(MCP251X_OST_DELAY_MS);

    /* Put device into config mode */
    mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);

    /* Wait for the device to enter config mode */
    ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
                         MCP251X_OST_DELAY_MS * 1000,
                         USEC_PER_SEC);
    if (ret) {
        dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
        return ret;
    }

    /* Disable and clear pending interrupts */
    mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
    enable_irq(spi->irq);

    return 0;
}

static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
                       struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;

    if (priv->tx_skb || priv->tx_len) {
        dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
        return NETDEV_TX_BUSY;
    }

    if (can_dropped_invalid_skb(net, skb))
        return NETDEV_TX_OK;

    netif_stop_queue(net);
    priv->tx_skb = skb;
    queue_work(priv->wq, &priv->tx_work);

    return NETDEV_TX_OK;
}

static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
{
    struct mcp251x_priv *priv = netdev_priv(net);

    switch (mode) {
    case CAN_MODE_START:
        mcp251x_clean(net);
        /* We have to delay work since SPI I/O may sleep */
        priv->can.state = CAN_STATE_ERROR_ACTIVE;
        priv->restart_tx = 1;
        if (priv->can.restart_ms == 0)
            priv->after_suspend = AFTER_SUSPEND_RESTART;
        queue_work(priv->wq, &priv->restart_work);
        break;
    default:
        return -EOPNOTSUPP;
    }

    return 0;
}

static int mcp251x_set_normal_mode(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 value;
    int ret;

    /* Enable interrupts */
    mcp251x_write_reg(spi, CANINTE,
              CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
              CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);

    if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
        /* Put device into loopback mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
    } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
        /* Put device into listen-only mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
    } else {
        /* Put device into normal mode */
        mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);

        /* Wait for the device to enter normal mode */
        ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
                             MCP251X_OST_DELAY_MS * 1000,
                             USEC_PER_SEC);
        if (ret) {
            dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
            return ret;
        }
    }
    priv->can.state = CAN_STATE_ERROR_ACTIVE;
    return 0;
}

static int mcp251x_do_set_bittiming(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct can_bittiming *bt = &priv->can.bittiming;
    struct spi_device *spi = priv->spi;

    mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
              (bt->brp - 1));
    mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
              (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
               CNF2_SAM : 0) |
              ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
              (bt->prop_seg - 1));
    mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
               (bt->phase_seg2 - 1));
    dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
        mcp251x_read_reg(spi, CNF1),
        mcp251x_read_reg(spi, CNF2),
        mcp251x_read_reg(spi, CNF3));

    return 0;
}

static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
{
    mcp251x_do_set_bittiming(net);

    mcp251x_write_reg(spi, RXBCTRL(0),
              RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
    mcp251x_write_reg(spi, RXBCTRL(1),
              RXBCTRL_RXM0 | RXBCTRL_RXM1);
    return 0;
}

static int mcp251x_hw_reset(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    u8 value;
    int ret;

    /* Wait for oscillator startup timer after power up */
    mdelay(MCP251X_OST_DELAY_MS);

    priv->spi_tx_buf[0] = INSTRUCTION_RESET;
    ret = mcp251x_spi_write(spi, 1);
    if (ret)
        return ret;

    /* Wait for oscillator startup timer after reset */
    mdelay(MCP251X_OST_DELAY_MS);

    /* Wait for reset to finish */
    ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
                         MCP251X_OST_DELAY_MS * 1000,
                         USEC_PER_SEC);
    if (ret)
        dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
    return ret;
}

static int mcp251x_hw_probe(struct spi_device *spi)
{
    u8 ctrl;
    int ret;

    ret = mcp251x_hw_reset(spi);
    if (ret)
        return ret;

    ctrl = mcp251x_read_reg(spi, CANCTRL);

    dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);

    /* Check for power up default value */
    if ((ctrl & 0x17) != 0x07)
        return -ENODEV;

    return 0;
}

static int mcp251x_power_enable(struct regulator *reg, int enable)
{
    if (IS_ERR_OR_NULL(reg))
        return 0;

    if (enable)
        return regulator_enable(reg);
    else
        return regulator_disable(reg);
}

static int mcp251x_stop(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;

    close_candev(net);

    priv->force_quit = 1;
    free_irq(spi->irq, priv);

    mutex_lock(&priv->mcp_lock);

    /* Disable and clear pending interrupts */
    mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);

    mcp251x_write_reg(spi, TXBCTRL(0), 0);
    mcp251x_clean(net);

    mcp251x_hw_sleep(spi);

    mcp251x_power_enable(priv->transceiver, 0);

    priv->can.state = CAN_STATE_STOPPED;

    mutex_unlock(&priv->mcp_lock);

    can_led_event(net, CAN_LED_EVENT_STOP);

    return 0;
}

static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
{
    struct sk_buff *skb;
    struct can_frame *frame;

    skb = alloc_can_err_skb(net, &frame);
    if (skb) {
        frame->can_id |= can_id;
        frame->data[1] = data1;
        netif_rx_ni(skb);
    } else {
        netdev_err(net, "cannot allocate error skb\n");
    }
}

static void mcp251x_tx_work_handler(struct work_struct *ws)
{
    struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
                         tx_work);
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;
    struct can_frame *frame;

    mutex_lock(&priv->mcp_lock);
    if (priv->tx_skb) {
        if (priv->can.state == CAN_STATE_BUS_OFF) {
            mcp251x_clean(net);
        } else {
            frame = (struct can_frame *)priv->tx_skb->data;

            if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
                frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
            mcp251x_hw_tx(spi, frame, 0);
            priv->tx_len = 1 + frame->can_dlc;
            can_put_echo_skb(priv->tx_skb, net, 0);
            priv->tx_skb = NULL;
        }
    }
    mutex_unlock(&priv->mcp_lock);
}

static void mcp251x_restart_work_handler(struct work_struct *ws)
{
    struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
                         restart_work);
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;

    mutex_lock(&priv->mcp_lock);
    if (priv->after_suspend) {
        if (priv->after_suspend & AFTER_SUSPEND_POWER) {
            mcp251x_hw_reset(spi);
            mcp251x_setup(net, spi);
            mcp251x_gpio_restore(spi);
        } else {
            mcp251x_hw_wake(spi);
        }
        priv->force_quit = 0;
        if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
            mcp251x_set_normal_mode(spi);
        } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
            netif_device_attach(net);
            mcp251x_clean(net);
            mcp251x_set_normal_mode(spi);
            netif_wake_queue(net);
        } else {
            mcp251x_hw_sleep(spi);
        }
        priv->after_suspend = 0;
    }

    if (priv->restart_tx) {
        priv->restart_tx = 0;
        mcp251x_write_reg(spi, TXBCTRL(0), 0);
        mcp251x_clean(net);
        netif_wake_queue(net);
        mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
    }
    mutex_unlock(&priv->mcp_lock);
}

static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
{
    struct mcp251x_priv *priv = dev_id;
    struct spi_device *spi = priv->spi;
    struct net_device *net = priv->net;

    mutex_lock(&priv->mcp_lock);
    while (!priv->force_quit) {
        enum can_state new_state;
        u8 intf, eflag;
        u8 clear_intf = 0;
        int can_id = 0, data1 = 0;

        mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);

        /* mask out flags we don't care about */
        intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;

        /* receive buffer 0 */
        if (intf & CANINTF_RX0IF) {
            mcp251x_hw_rx(spi, 0);
            /* Free one buffer ASAP
             * (The MCP2515/25625 does this automatically.)
             */
            if (mcp251x_is_2510(spi))
                mcp251x_write_bits(spi, CANINTF,
                           CANINTF_RX0IF, 0x00);
        }

        /* receive buffer 1 */
        if (intf & CANINTF_RX1IF) {
            mcp251x_hw_rx(spi, 1);
            /* The MCP2515/25625 does this automatically. */
            if (mcp251x_is_2510(spi))
                clear_intf |= CANINTF_RX1IF;
        }

        /* any error or tx interrupt we need to clear? */
        if (intf & (CANINTF_ERR | CANINTF_TX))
            clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
        if (clear_intf)
            mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);

        if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
            mcp251x_write_bits(spi, EFLG, eflag, 0x00);

        /* Update can state */
        if (eflag & EFLG_TXBO) {
            new_state = CAN_STATE_BUS_OFF;
            can_id |= CAN_ERR_BUSOFF;
        } else if (eflag & EFLG_TXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_PASSIVE;
        } else if (eflag & EFLG_RXEP) {
            new_state = CAN_STATE_ERROR_PASSIVE;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_PASSIVE;
        } else if (eflag & EFLG_TXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_TX_WARNING;
        } else if (eflag & EFLG_RXWAR) {
            new_state = CAN_STATE_ERROR_WARNING;
            can_id |= CAN_ERR_CRTL;
            data1 |= CAN_ERR_CRTL_RX_WARNING;
        } else {
            new_state = CAN_STATE_ERROR_ACTIVE;
        }

        /* Update can state statistics */
        switch (priv->can.state) {
        case CAN_STATE_ERROR_ACTIVE:
            if (new_state >= CAN_STATE_ERROR_WARNING &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_warning++;

        case CAN_STATE_ERROR_WARNING:
            if (new_state >= CAN_STATE_ERROR_PASSIVE &&
                new_state <= CAN_STATE_BUS_OFF)
                priv->can.can_stats.error_passive++;
            break;
        default:
            break;
        }
        priv->can.state = new_state;

        if (intf & CANINTF_ERRIF) {
            /* Handle overflow counters */
            if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
                if (eflag & EFLG_RX0OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                if (eflag & EFLG_RX1OVR) {
                    net->stats.rx_over_errors++;
                    net->stats.rx_errors++;
                }
                can_id |= CAN_ERR_CRTL;
                data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
            }
            mcp251x_error_skb(net, can_id, data1);
        }

        if (priv->can.state == CAN_STATE_BUS_OFF) {
            if (priv->can.restart_ms == 0) {
                priv->force_quit = 1;
                priv->can.can_stats.bus_off++;
                can_bus_off(net);
                mcp251x_hw_sleep(spi);
                break;
            }
        }

        if (intf == 0)
            break;

        if (intf & CANINTF_TX) {
            net->stats.tx_packets++;
            net->stats.tx_bytes += priv->tx_len - 1;
            can_led_event(net, CAN_LED_EVENT_TX);
            if (priv->tx_len) {
                can_get_echo_skb(net, 0);
                priv->tx_len = 0;
            }
            netif_wake_queue(net);
        }
    }
    mutex_unlock(&priv->mcp_lock);
    return IRQ_HANDLED;
}

static int mcp251x_open(struct net_device *net)
{
    struct mcp251x_priv *priv = netdev_priv(net);
    struct spi_device *spi = priv->spi;
    unsigned long flags = 0;
    int ret;

    ret = open_candev(net);
    if (ret) {
        dev_err(&spi->dev, "unable to set initial baudrate!\n");
        return ret;
    }

    mutex_lock(&priv->mcp_lock);
    mcp251x_power_enable(priv->transceiver, 1);

    priv->force_quit = 0;
    priv->tx_skb = NULL;
    priv->tx_len = 0;

    if (!dev_fwnode(&spi->dev))
        flags = IRQF_TRIGGER_FALLING;

    ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
                   flags | IRQF_ONESHOT, dev_name(&spi->dev),
                   priv);
    if (ret) {
        dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
        goto out_close;
    }

    ret = mcp251x_hw_wake(spi);
    if (ret)
        goto out_free_irq;
    ret = mcp251x_setup(net, spi);
    if (ret)
        goto out_free_irq;
    ret = mcp251x_set_normal_mode(spi);
    if (ret)
        goto out_free_irq;

    can_led_event(net, CAN_LED_EVENT_OPEN);

    netif_wake_queue(net);
    mutex_unlock(&priv->mcp_lock);

    return 0;

out_free_irq:
    free_irq(spi->irq, priv);
    mcp251x_hw_sleep(spi);
out_close:
    mcp251x_power_enable(priv->transceiver, 0);
    close_candev(net);
    mutex_unlock(&priv->mcp_lock);
    return ret;
}

static const struct net_device_ops mcp251x_netdev_ops = {
    .ndo_open = mcp251x_open,
    .ndo_stop = mcp251x_stop,
    .ndo_start_xmit = mcp251x_hard_start_xmit,
    .ndo_change_mtu = can_change_mtu,
};

static const struct of_device_id mcp251x_of_match[] = {
    {
        .compatible    = "microchip,mcp2510",
        .data        = (void *)CAN_MCP251X_MCP2510,
    },
    {
        .compatible    = "microchip,mcp2515",
        .data        = (void *)CAN_MCP251X_MCP2515,
    },
    {
        .compatible    = "microchip,mcp25625",
        .data        = (void *)CAN_MCP251X_MCP25625,
    },
    { }
};
MODULE_DEVICE_TABLE(of, mcp251x_of_match);

static const struct spi_device_id mcp251x_id_table[] = {
    {
        .name        = "mcp2510",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2510,
    },
    {
        .name        = "mcp2515",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP2515,
    },
    {
        .name        = "mcp25625",
        .driver_data    = (kernel_ulong_t)CAN_MCP251X_MCP25625,
    },
    { }
};
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);

static int mcp251x_can_probe(struct spi_device *spi)
{
    const void *match = device_get_match_data(&spi->dev);
    struct net_device *net;
    struct mcp251x_priv *priv;
    struct clk *clk;
    u32 freq;
    int ret;

    clk = devm_clk_get_optional(&spi->dev, NULL);
    if (IS_ERR(clk))
        return PTR_ERR(clk);

    freq = clk_get_rate(clk);
    if (freq == 0)
        device_property_read_u32(&spi->dev, "clock-frequency", &freq);

    /* Sanity check */
    if (freq < 1000000 || freq > 25000000)
        return -ERANGE;

    /* Allocate can/net device */
    net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
    if (!net)
        return -ENOMEM;

    ret = clk_prepare_enable(clk);
    if (ret)
        goto out_free;

    net->netdev_ops = &mcp251x_netdev_ops;
    net->flags |= IFF_ECHO;

    priv = netdev_priv(net);
    priv->can.bittiming_const = &mcp251x_bittiming_const;
    priv->can.do_set_mode = mcp251x_do_set_mode;
    priv->can.clock.freq = freq / 2;
    priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
        CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
    if (match)
        priv->model = (enum mcp251x_model)match;
    else
        priv->model = spi_get_device_id(spi)->driver_data;
    priv->net = net;
    priv->clk = clk;

    spi_set_drvdata(spi, priv);

    /* Configure the SPI bus */
    spi->bits_per_word = 8;
    if (mcp251x_is_2510(spi))
        spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
    else
        spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
    ret = spi_setup(spi);
    if (ret)
        goto out_clk;

    priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
    priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
    if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
        (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
        ret = -EPROBE_DEFER;
        goto out_clk;
    }

    ret = mcp251x_power_enable(priv->power, 1);
    if (ret)
        goto out_clk;

    priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
                   0);
    if (!priv->wq) {
        ret = -ENOMEM;
        goto out_clk;
    }
    INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
    INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);

    priv->spi = spi;
    mutex_init(&priv->mcp_lock);

    priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
                    GFP_KERNEL);
    if (!priv->spi_tx_buf) {
        ret = -ENOMEM;
        goto error_probe;
    }

    priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
                    GFP_KERNEL);
    if (!priv->spi_rx_buf) {
        ret = -ENOMEM;
        goto error_probe;
    }

    SET_NETDEV_DEV(net, &spi->dev);

    /* Here is OK to not lock the MCP, no one knows about it yet */
    ret = mcp251x_hw_probe(spi);
    if (ret) {
        if (ret == -ENODEV)
            dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
                priv->model);
        goto error_probe;
    }

    mcp251x_hw_sleep(spi);

    ret = register_candev(net);
    if (ret)
        goto error_probe;

    devm_can_led_init(net);

    ret = mcp251x_gpio_setup(priv);
    if (ret)
        goto error_probe;

    netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
    return 0;

error_probe:
    destroy_workqueue(priv->wq);
    priv->wq = NULL;
    mcp251x_power_enable(priv->power, 0);

out_clk:
    clk_disable_unprepare(clk);

out_free:
    free_candev(net);

    dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
    return ret;
}

static int mcp251x_can_remove(struct spi_device *spi)
{
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct net_device *net = priv->net;

    unregister_candev(net);

    mcp251x_power_enable(priv->power, 0);

    destroy_workqueue(priv->wq);
    priv->wq = NULL;

    clk_disable_unprepare(priv->clk);

    free_candev(net);

    return 0;
}

static int __maybe_unused mcp251x_can_suspend(struct device *dev)
{
    struct spi_device *spi = to_spi_device(dev);
    struct mcp251x_priv *priv = spi_get_drvdata(spi);
    struct net_device *net = priv->net;

    priv->force_quit = 1;
    disable_irq(spi->irq);
    /* Note: at this point neither IST nor workqueues are running.
     * open/stop cannot be called anyway so locking is not needed
     */
    if (netif_running(net)) {
        netif_device_detach(net);

        mcp251x_hw_sleep(spi);
        mcp251x_power_enable(priv->transceiver, 0);
        priv->after_suspend = AFTER_SUSPEND_UP;
    } else {
        priv->after_suspend = AFTER_SUSPEND_DOWN;
    }

    mcp251x_power_enable(priv->power, 0);
    priv->after_suspend |= AFTER_SUSPEND_POWER;

    return 0;
}

static int __maybe_unused mcp251x_can_resume(struct device *dev)
{
    struct spi_device *spi = to_spi_device(dev);
    struct mcp251x_priv *priv = spi_get_drvdata(spi);

    if (priv->after_suspend & AFTER_SUSPEND_POWER)
        mcp251x_power_enable(priv->power, 1);
    if (priv->after_suspend & AFTER_SUSPEND_UP)
        mcp251x_power_enable(priv->transceiver, 1);

    if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
        queue_work(priv->wq, &priv->restart_work);
    else
        priv->after_suspend = 0;

    priv->force_quit = 0;
    enable_irq(spi->irq);
    return 0;
}

static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
    mcp251x_can_resume);

static struct spi_driver mcp251x_can_driver = {
    .driver = {
        .name = DEVICE_NAME,
        .of_match_table = mcp251x_of_match,
        .pm = &mcp251x_can_pm_ops,
    },
    .id_table = mcp251x_id_table,
    .probe = mcp251x_can_probe,
    .remove = mcp251x_can_remove,
};
module_spi_driver(mcp251x_can_driver);

MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
          "Christian Pellegrin <chripell@evolware.org>");
MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
MODULE_LICENSE("GPL v2");

3.功能测试

使用 candump 和 cansend 工具进行收发报文测试即可,将工具push到/system/bin/目录下执行。工具可以在 官方 或者 github 下载。

#在收发端关闭can0设备
ip link set can0 down
#在收发端设置比特率为250Kbps                 
ip link set can0 type can bitrate 250000
#在收发端打开can0设备      
ip link set can0 up
#在接收端执行candump,阻塞等待报文                            
candump can0
#在发送端执行cansend,发送报文            
cansend can0 123#1122334455667788

4.bug修复

瑞芯微原生的CAN接口在使用中遇到如下问题,经过调试进行了修复和规避
CAN拓展帧发送时偶发标准帧问题

  • 发送接收数据时总线错误帧多的问题
  • 规避了错误帧中断过多导致的系统卡顿问题
  • 支持CAN2.0协议标准数据帧收发

开发板技术参考:3. CAN 使用 — Firefly Wiki

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
技术小宅
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区