YOLOV5 代码复现以及搭载服务器运行

YOLOV5 代码复现以及搭载服务器运行 Tony 2023-07-19 10:59:39 951

前言

在前面文章中提到,目标检测有两种方式,一种是one_stage(单阶段)如YOLO 一种是two_stage(双阶段)如Faster_Rcnn,Mask_Rcnn。之前介绍了Faster_Rcnn,这篇文章主要介绍YOLOV5 代码复现过程,以及配置文件的修改。

一、YOLO简介

YOLO是目标检测的一种网络框架,检测速度非常快,适合做一些实时检测,YOLO现在经过几代版本的更迭,现在已经到了V5版本,V5提供了5l,5m,5s,5x几种版本,这篇文章使用5s的模型。

二、代码下载

大家可以自行到百度网盘进行下载,附链接:

链接:百度网盘
提取码:qnn5

三、数据集准备

在上篇文章中,介绍了xml转txt文件的代码过程,可以自行查看,附链接:
代码
转换之后,还可以分成训练集跟测试集

在这里插入图片描述

images 放置文件
labels 放置txt文件
这里要注意的是,文件夹名称一定为images跟labels,原代码规定如下:

  1. def img2label_paths(img_paths):
  2. # Define label paths as a function of image paths
  3. sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
  4. return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]

四、配置文件的修改

1.data下的yaml

在这里插入图片描述

修改data目录下面的VOCyaml文件,

  1. 修改前:
  2. path: ../datasets/VOC
  3. train: # train images (relative to 'path') 16551 images
  4. - images/train2012
  5. - images/train2007
  6. - images/val2012
  7. - images/val2007
  8. val: # val images (relative to 'path') 4952 images
  9. - images/test2007
  10. test: # test images (optional)
  11. - images/test2007
  12. 修改后
  13. train: # train images (relative to 'path') 16551 images
  14. - /mnt/wu/images/train
  15. val: # val images (relative to 'path') 4952 images
  16. - /mnt/wu/images/val

这里修改数据路径

  1. 修改前:
  2. nc: 20 # number of classes
  3. names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
  4. 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
  5. 修改后:
  6. nc: 4 # number of classes
  7. names: ["Traffic_Light_go","Traffic_Light_stop","Traffic_Light_warning",'Traffic_Light_ambiguous'] # class names

这里更改nc跟标签
nc:表示你训练的数据是几分类。

在这里插入图片描述

2.models下的yaml

在这里插入图片描述

这里使用的是5s的模型,更改yolov5s.yaml文件

在这里插入图片描述

这里只需要更改nc可以,代表你训练的数据是几分类。

3.训练train

在这里插入图片描述

  • 更改YOLOV5s模型的路径
  1. parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
  • 更改上面修改过models的yaml文件路径
  1. parser.add_argument('--cfg', type=str, default='models/traffic.yaml', help='model.yaml path')

3.更改上面修改过data的yaml文件路径

  1. parser.add_argument('--data', type=str, default=ROOT / 'data/traffic.yaml', help='dataset.yaml path')
  • 训练批次
  1. parser.add_argument('--epochs', type=int, default=50)
  • 批次大小,batch_size 如果在训练过程中出现显存不足可以降低batch_size的大小
  1. parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs, -1 for autobatch')

五、搭载服务器训练

像YOLO这种深度框架,最好搭载服务器进行训练,博主使用的是矩池云,附链接矩池云
附邀 请码:BQlYmrQhDiex1lZ

1.上传数据

租服务器之前,先上传数据,数据很大的话,租服务器之后上传会浪费时间,还费钱。
进入我的网盘,上传数据。

在这里插入图片描述

2.租服务器

这里选择显卡型号,进行租用。

在这里插入图片描述

环境选择yolov5环境,省去配环境的环节。

3.pycharm连接服务器

租用好之后,进入租用界面,显示租用服务器的详细信息。

请添加图片描述

这里使用ssh连接。

请添加图片描述

  • 添加ssh

在这里插入图片描述

根据租用服务器的ssh链接,输入主机,用户名,端口。

  • 输入密码

  • 配置服务器环境路径跟代码映射路径

在这里插入图片描述

打开链接,进入终端。

输入conda env list查看环境路径

配置环境路径,代码映射路径
mnt路径下就是自己的网盘路径。

如图所示,配置完成。

4.解压数据

打开终端,cd到压缩数据集目录下,unzip 文件名 进行解压,如下图所示:

5.开始训练

等待代码全部上传至服务器之后,按照服务器数据集路径,修改data下面的yaml文件中数据集路径,就可以进行训练了。

如下图所示:就是搭载服务器进行训练。

请添加图片描述
请添加图片描述

如图所示,开始训练。

请添加图片描述
请添加图片描述

训练结束。

请添加图片描述

这个路径下就是训练产生的权值文件。

请添加图片描述

best.ph 是最好的权值文件。
last.ph 是最后一次训练的权值文件。

6.文件下载到本地

我们可以通过winscp这个软件,将训练的好的文件夹,下载到本地

  • 输入主机名,端口号,用户名,密码,连接服务器

如图所示,连接成功

  • 找到文件夹,下载到本地。

    六、测试

我们可以根据训练好的权重进行测试。
测试代码detect.py

在这里插入图片描述

权重文件路径

  1. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/exp6/weights/best.pt', help='model path(s)')

测试图片,视频路径,0表示开启摄像头。

  1. parser.add_argument('--source', type=str, default="traffic.mp4", help='file/dir/URL/glob, 0 for webcam')

设置好之后就可以就行测试。

测试完成,会显示保存路径。
打开文件夹,查看效果。

总结

以上就是YOLOV5 搭载服务器复现的全部过程,大家在复现过程中,遇到的问题,可以反馈到评论区。

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
Tony
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
Tony
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区