经典卷积神经网络——VGG16

经典卷积神经网络——VGG16 风清扬 2023-07-18 15:53:02 788

文章目录

前言

我们都知道Alexnet是卷积神经网络的开山之作,但是由于卷积核太大,移动步长大,无填充,所以14年提出的VGG网络解决了这一问题

一、VGG发展历程

VGG网络由牛津大学在2014年ImageNet挑战赛本地和分类追踪分别获得了第一名和第二名。研究卷积网络深度对其影响在大规模图像识别设置中的准确性,主要贡献是全面评估网络的深度,使用3*3卷积滤波器来提取特征。解决了Alexnet容易忽略小部分的特征。

二、VGG网络模型


从这张图中可以看到,VGG网络有11-19层,今天我们主要了解VGG16,VGG网络有一个特点,在每一次池化之后,经过卷积通道数都会翻倍,这样的好处就是为了保留更多的特征。
VGG16一个有13个卷积层3个全连接层。

三、VGG16代码详解

1.VGG网络架构

1.通过上面表格我们可以发现,经过max池化之后,通道数会翻倍,我们可以为了减少代码量,把这一过程封装成一个类,在使用过程中,直接调用就可以了。

class tiao(nn.Module):
    def __init__(self,shuru):
        super(tiao, self).__init__()
        self.conv1=nn.Conv2d(in_channels=shuru,out_channels=shuru*2,kernel_size=(3,3))
        self.conv2=nn.Conv2d(in_channels=shuru*2,out_channels=shuru*2,kernel_size=(3,3))
        self.relu=nn.ReLU()

    def forward(self,x):
        x1=self.conv1(x)
        x2=self.relu(x1)
        x3=self.conv2(x2)
        x4=self.relu(x3)

        return x4

这个类,很简单就是两层卷积,加两层激活函数,输出通道数翻倍
2.第二步就可以按照表格实现VGG16网络

  • 输入三通道,输出64通道,卷积核为3
self.conv1=nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3))
self.conv2=nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3,3))
  • 经过最大池化,通道数翻倍 输入64通道 经过两次卷积 输出通道128

    这里直接调用上面封装好的类就行
self.tiao128=tiao(64)
  • 经过最大池化,输入128通道 经过两次33卷积一次11卷积 输出通道256
self.tiao256=tiao(128)
self.conv1_256=nn.Conv2d(in_channels=256,out_channels=256,kernel_size=(1,1))
  • 经过最大池化,输入256通道 经过两次33卷积一次11卷积 输出通道512
self.tiao512=tiao(256)
self.conv1_512=nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(1,1))
self.tiao512=tiao(256)
self.conv1_512=nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(1,1))
  • 经过最大池化,输入512通道,经过两次33卷积一次11卷积 输出通道512
self.conv512 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3))
 self.conv1_512=nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(1,1))
  • 最后的三层全连接,这里要注意,使用自适应池化,池化之后图片尺寸是7*7
self.zsy=nn.AdaptiveAvgPool2d(7)
self.l1=nn.Linear(512*7*7,4096)
self.l2=nn.Linear(4096,4096)
self.l3=nn.Linear(4096,10)
  • 还有relu激活函数,dropout随机失活函数,这里为了整洁,图表没有明确指出
self.relu=nn.ReLU()
 self.dropout=nn.Dropout2d(p=0.2)
  • 最后就是前向传播
  x1=self.conv1(x)
        x2=self.relu(x1)
        x3=self.conv2(x2)
        x4=self.maxpool(x3)
        x5=self.tiao128(x4)
        x6=self.maxpool(x5)
        x7=self.tiao256(x6)
        x8=self.conv1_256(x7)
        x9=self.maxpool(x8)
        x10=self.tiao512(x9)
        x11=self.conv1_512(x10)
        x12=self.maxpool(x11)
        x13=self.conv512(x12)
        x14=self.conv512(x13)
        x15=self.conv1_512(x14)
        x16=self.zsy(x15)
        x17=x16.view(x16.size()[0],-1)
        x18=self.l1(x17)
        x19 = self.relu(x18)
        x20=self.dropout(x19)

        x22 = self.l2(x20)
        x23=self.relu(x22)
        x24=self.dropout(x23)

        x25=self.l3(x24)

        return x25

到这里VGG16网络就全部完成了

2.VGG16网络验证

这里我们可以进行验证,看网络有没有什么问题

model=VGG16()
input=torch.randn(1,3,224,224)
output=model(input).cuda()
print(output)

3.读取数据,进行数据增强

 transform=transforms.Compose([
        #图像增强
        transforms.Resize(120),
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(224),
        transforms.ColorJitter(brightness=0.5,contrast=0.5,hue=0.5),
        #转变为tensor 正则化
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)) #正则化
    ])

读取数据时,可以调整线程数,batch_size可以使代码跑起来更快,提高GPU利用率,这里要注意一个问题,线程数过大新手会出现页面太小报错,这时候调整虚拟内存就可以了

trainset=tv.datasets.CIFAR10(
        root=r'E:\桌面\资料\cv3\数据集\cifar-10-batches-py',
        train=True,
        download=True,
        transform=transform
    )

    trainloader=data.DataLoader(
        trainset,
        batch_size=8,
        drop_last=True,
        shuffle=True, #乱序
        num_workers=4,

    )

    testset=tv.datasets.CIFAR10(
        root=r'E:\桌面\资料\cv3\数据集\cifar-10-batches-py',
        train=False,
        download=True,
        transform=transform
    )

    testloader=data.DataLoader(
        testset,
        batch_size=4,
        drop_last=True,
        shuffle=False,
        num_workers=2
    )

4.训练模型,测试准确率

数据读取完成,我们就可以训练模型,以及测试模型准确率

 for i in range(3):
        running_loss=0
        for index,data in enumerate(trainloader):
            x,y=data
            x=x.cuda()
            y=y.cuda()
            x,y=Variable(x),Variable(y)

            opt.zero_grad()

            h=model(x)
            loss1=loss(h,y)
            loss1.backward()
            opt.step()

            running_loss+=loss1.item()
            if index % 10 == 9:
                avg_loss = running_loss/ 10.

                running_loss = 0

                print('avg_loss', avg_loss)

            if index%1000==99:
                acc=0
                total=0
                for data  in testloader:
                    images,labels=data
                    outputs=model(Variable(images.cuda()))
                    _,predicted=torch.max(outputs.cpu(),1)
                    total+=labels.size(0)
                    bool_tensor=(predicted==labels)
                    acc+=bool_tensor.sum()

                print("1000张精度为 %d  %%"%(100*acc/total))

四、VGG缺点

在vgg网络中,按照道理来说,随着层数的不断提高,网络模型会越来越好,但是研究发现,随着层数的不断提高,准确率缺不断下降,为了这个问题,随后提出的残差网络,解决了这一问题。

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
风清扬
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区