卷积神经网络 迁移学习

卷积神经网络 迁移学习 felix 2023-07-10 16:54:05 767

文章目录

前言

在深度学习训练的过程中,随着网络层数的提升,我们训练的次数,参数都会提高,训练时间相应就会增加,我们今天来了解迁移学习

一、经典的卷积神经网络

在pytorch官网中,我们可以看到许多经典的卷积神经网络。
附官网链接:https://pytorch.org/


这里简单介绍一下经典的卷积神经发展历程
1.首先可以说是卷积神经网络的开山之作Alexnet(12年的夺冠之作)这里简单说一下缺点 卷积核大,步长大,没有填充层,大刀阔斧的提取特征,容易忽略一些重要的特征
2第二个就是VGG网络,它的卷积核大小是3*3,有一个优点是经过池化层之后,通道数翻倍,可以更多的保留一些特征,这是VGG的一个特点

在接下来的一段时间中,出现了一个问题,我们都知道,深度学习随着训练次数的不断增加,效果应该是越来越好,但是这里出现了一个问题,研究发现随着VGG网络的不断提高,效果却没有原来的好,这时候人们就认为,深度学习是不是只能发展到这里了,这时遇到了一个瓶颈。
3.接下来随着残差网络(Resnet)的提出,解决了上面这个问题,这个网络的优点是保留了原有的特征,假如经过卷积之后提取的特征还没有原图的好,这时候保留原有的特征,就会解决这一问题,下面就是resnet网络模型


这是一些训练对比:

二、迁移学习的目标

首先我们使用迁移学习的目标就是用人家训练好的权重参数,偏置参数,来训练我们的模型。

三、好处

深度学习要训练的数据量是很大的,当我们数据量少时,我们训练的权重参数就不会那么的好,所以这时候我们就可以使用别人训练好的权重参数,偏置参数来使用,会使我们的模型准确率得到提高

四、步骤

迁移学习大致可以分为三步
1.加载模型
2.冻结层数
3.全连接层

五、代码

这里使用的是resnet152

import torch
import torchvision as tv
import torch.nn as nn
import torchvision
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch
from torch.utils import data
from torch import optim
from torch.autograd import Variable

model_name='resnet'
featuer_extract=True
train_on_gpu=torch.cuda.is_available()

if not train_on_gpu:
    print("没有gpu")
else :
    print("是gpu")

devic=torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
teature_extract=True

def set_paremeter_requires_grad(model,featuer_extract):
    if featuer_extract:
        for parm in model.parameters():
            parm.requires_grad=False   #不做训练

def initialize_model(model_name,num_classes,featuer_extract,use_pretrained=True):
    model_ft = None
    input_size = 0
    if model_name=="resnet":

        model_ft=tv.models.resnet152(pretrained=use_pretrained)#下载模型
        set_paremeter_requires_grad(model_ft,featuer_extract) #冻结层数
        num_ftrs=model_ft.fc.in_features #改动全连接层
        model_ft.fc=nn.Sequential(nn.Linear(num_ftrs,num_classes),
                                  nn.LogSoftmax(dim=1))

        input_size=224 #输入维度
    return  model_ft,input_size

model_ft,iput_size=initialize_model(model_name,10,featuer_extract,use_pretrained=True)

model_ft=model_ft.to(devic)

params_to_updata=model_ft.parameters()
if featuer_extract:
    params_to_updata=[]
    for name,param in model_ft.named_parameters():
        if param.requires_grad==True:
            params_to_updata.append(param)
            print("\t",name)
else:
    for name,param in model_ft.parameters():
        if param.requires_grad==True:
            print("\t",name)

opt=optim.Adam(params_to_updata,lr=0.01)
loss=nn.NLLLoss()

if __name__ == '__main__':
    transform = transforms.Compose([
        # 图像增强
        transforms.Resize(1024),#裁剪
        transforms.RandomHorizontalFlip(),#随机水平翻转
        transforms.RandomCrop(224),#随机裁剪
        transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), #亮度
        # 转变为tensor 正则化
        transforms.ToTensor(), #转换格式
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))  # 归一化处理
    ])

    trainset = tv.datasets.CIFAR10(
        root=r'E:\桌面\资料\cv3\数据集\cifar-10-batches-py',
        train=True,
        download=True,
        transform=transform
    )

    trainloader = data.DataLoader(
        trainset,
        batch_size=8,
        drop_last=True,
        shuffle=True,  # 乱序
        num_workers=4,

    )

    testset = tv.datasets.CIFAR10(
        root=r'E:\桌面\资料\cv3\数据集\cifar-10-batches-py',
        train=False,
        download=True,
        transform=transform
    )

    testloader = data.DataLoader(
        testset,
        batch_size=8,
        drop_last=True,
        shuffle=False,
        num_workers=4
    )

    for epoch in range(3):
        running_loss=0
        for index,data in enumerate(trainloader,0):
            inputs, labels = data
            inputs = inputs.to(devic)
            labels = labels.to(devic)

            inputs, labels = Variable(inputs), Variable(labels)

            opt.zero_grad()

            h=model_ft(inputs)

            loss1=loss(h,labels)

            loss1.backward()

            opt.step()

            h+=loss1.item()

            if index%10==9:
                avg_loss=loss1/10.

                running_loss=0

                print('avg_loss',avg_loss)

            if index%100==99 :
                correct=0
                total=0
                for data in testloader:
                    images,labels=data

                    outputs=model_ft(Variable(images.cuda()))
                    _,predicted=torch.max(outputs.cpu(),1)
                    total+=labels.size(0)
                    bool_tensor=(predicted==labels)
                    correct+=bool_tensor.sum()

                print('1000张测试集中的准确率为%d   %%'%(100*correct/total))
声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
felix
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
felix
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区