语义分割 U-Net 应用入门

语义分割 U-Net 应用入门 愚人陆陆 2023-06-29 14:52:14 921

文章目录

1. 简介

这里采用了一个在图像分割领域比较熟知的U-Net网络结构
是一个基于FCN做改进后的一个深度学习网络
包含下采样(编码器,特征提取)和上采样(解码器,分辨率还原)两个阶段,因模型结构比较像U型而命名为U-Net

2. 源码

根据PaddlePaddle飞桨开源框架上的文档代码进行一些更改:

  1. 整合和梳理工程文件
  2. 调整数据集地址
  3. 调整网络结构

可以通过以下渠道下载:

3. 数据集

3.1. 开源数据集

本案例使用原文里的一个例子的 Oxford-IIIT Pet数据集
里面包含了宠物照片和对应的标签数据
宠物图片在 /images
标签数据在 /annotations/trimaps
具体详情参考 飞桨官方文档说明

3.2. 建立数据集文件夹

在工程中新建文件夹 /resources/Oxford-IIIT Pet/images,将所有数据原始图片均放置于此
在工程中新建文件夹 /resources/Oxford-IIIT Pet/masks,将所有数据标签图片均放置于此

3.3. 数据格式统一

宠物图片数据集里为jpg格式,这边利用tool_jpg2png.py将其统一为png

import os
from PIL import Image

# 原图和标签图片地址
resources_path = "./resources/Oxford-IIIT Pet"
origin_images_path = resources_path + "/images"
img_name_list = os.listdir(origin_images_path)

for img_name in img_name_list:
    if img_name[-3:] == "jpg":
        tp = Image.open(origin_images_path + '/' + img_name)
        tp.save(origin_images_path + '/' + img_name[:-3] + 'png')
        os.remove(origin_images_path + '/' + img_name)

4. 网络结构

网络结构在model.py中定义
根据U-Net的图片中设置相似的结构,具体如下:

-----------------------------------------------------------------------------
  Layer (type)        Input Shape          Output Shape         Param #
=============================================================================
    Conv2D-1       [[1, 3, 160, 160]]   [1, 16, 160, 160]         448
  BatchNorm2D-1   [[1, 16, 160, 160]]   [1, 16, 160, 160]         64
     ReLU-1       [[1, 16, 160, 160]]   [1, 16, 160, 160]          0
    Conv2D-2      [[1, 16, 160, 160]]   [1, 16, 160, 160]        2,320
  BatchNorm2D-2   [[1, 16, 160, 160]]   [1, 16, 160, 160]         64
     ReLU-2       [[1, 16, 160, 160]]   [1, 16, 160, 160]          0
   MaxPool2D-1    [[1, 16, 160, 160]]    [1, 16, 80, 80]           0
    Conv2D-3       [[1, 16, 80, 80]]     [1, 32, 80, 80]         4,640
  BatchNorm2D-3    [[1, 32, 80, 80]]     [1, 32, 80, 80]          128
     ReLU-3        [[1, 32, 80, 80]]     [1, 32, 80, 80]           0
    Conv2D-4       [[1, 32, 80, 80]]     [1, 32, 80, 80]         9,248
  BatchNorm2D-4    [[1, 32, 80, 80]]     [1, 32, 80, 80]          128
     ReLU-4        [[1, 32, 80, 80]]     [1, 32, 80, 80]           0
   MaxPool2D-2     [[1, 32, 80, 80]]     [1, 32, 40, 40]           0
    Conv2D-5       [[1, 32, 40, 40]]     [1, 64, 40, 40]        18,496
  BatchNorm2D-5    [[1, 64, 40, 40]]     [1, 64, 40, 40]          256
     ReLU-5        [[1, 64, 40, 40]]     [1, 64, 40, 40]           0
    Conv2D-6       [[1, 64, 40, 40]]     [1, 64, 40, 40]        36,928
  BatchNorm2D-6    [[1, 64, 40, 40]]     [1, 64, 40, 40]          256
     ReLU-6        [[1, 64, 40, 40]]     [1, 64, 40, 40]           0
   MaxPool2D-3     [[1, 64, 40, 40]]     [1, 64, 20, 20]           0
    Conv2D-7       [[1, 64, 20, 20]]     [1, 128, 20, 20]       73,856
  BatchNorm2D-7    [[1, 128, 20, 20]]    [1, 128, 20, 20]         512
     ReLU-7        [[1, 128, 20, 20]]    [1, 128, 20, 20]          0
    Conv2D-8       [[1, 128, 20, 20]]    [1, 128, 20, 20]       147,584
  BatchNorm2D-8    [[1, 128, 20, 20]]    [1, 128, 20, 20]         512
     ReLU-8        [[1, 128, 20, 20]]    [1, 128, 20, 20]          0
   MaxPool2D-4     [[1, 128, 20, 20]]    [1, 128, 10, 10]          0
    Conv2D-9       [[1, 128, 10, 10]]    [1, 256, 10, 10]       295,168
  BatchNorm2D-9    [[1, 256, 10, 10]]    [1, 256, 10, 10]        1,024
     ReLU-9        [[1, 256, 10, 10]]    [1, 256, 10, 10]          0
    Conv2D-10      [[1, 256, 10, 10]]    [1, 256, 10, 10]       590,080
 BatchNorm2D-10    [[1, 256, 10, 10]]    [1, 256, 10, 10]        1,024
     ReLU-10       [[1, 256, 10, 10]]    [1, 256, 10, 10]          0
   Upsample-1      [[1, 256, 10, 10]]    [1, 256, 20, 20]          0
    Conv2D-11      [[1, 256, 20, 20]]    [1, 128, 20, 20]       32,896
Conv2DTranspose-1  [[1, 128, 20, 20]]    [1, 128, 20, 20]       147,584
 BatchNorm2D-11    [[1, 128, 20, 20]]    [1, 128, 20, 20]         512
     ReLU-11       [[1, 128, 20, 20]]    [1, 128, 20, 20]          0
Conv2DTranspose-2  [[1, 128, 20, 20]]    [1, 128, 20, 20]       147,584
 BatchNorm2D-12    [[1, 128, 20, 20]]    [1, 128, 20, 20]         512
     ReLU-12       [[1, 128, 20, 20]]    [1, 128, 20, 20]          0
   Upsample-2      [[1, 128, 20, 20]]    [1, 128, 40, 40]          0
    Conv2D-12      [[1, 128, 40, 40]]    [1, 64, 40, 40]         8,256
Conv2DTranspose-3  [[1, 64, 40, 40]]     [1, 64, 40, 40]        36,928
 BatchNorm2D-13    [[1, 64, 40, 40]]     [1, 64, 40, 40]          256
     ReLU-13       [[1, 64, 40, 40]]     [1, 64, 40, 40]           0
Conv2DTranspose-4  [[1, 64, 40, 40]]     [1, 64, 40, 40]        36,928
 BatchNorm2D-14    [[1, 64, 40, 40]]     [1, 64, 40, 40]          256
     ReLU-14       [[1, 64, 40, 40]]     [1, 64, 40, 40]           0
   Upsample-3      [[1, 64, 40, 40]]     [1, 64, 80, 80]           0
    Conv2D-13      [[1, 64, 80, 80]]     [1, 32, 80, 80]         2,080
Conv2DTranspose-5  [[1, 32, 80, 80]]     [1, 32, 80, 80]         9,248
 BatchNorm2D-15    [[1, 32, 80, 80]]     [1, 32, 80, 80]          128
     ReLU-15       [[1, 32, 80, 80]]     [1, 32, 80, 80]           0
Conv2DTranspose-6  [[1, 32, 80, 80]]     [1, 32, 80, 80]         9,248
 BatchNorm2D-16    [[1, 32, 80, 80]]     [1, 32, 80, 80]          128
     ReLU-16       [[1, 32, 80, 80]]     [1, 32, 80, 80]           0
   Upsample-4      [[1, 32, 80, 80]]    [1, 32, 160, 160]          0
    Conv2D-14     [[1, 32, 160, 160]]   [1, 16, 160, 160]         528
Conv2DTranspose-7 [[1, 16, 160, 160]]   [1, 16, 160, 160]        2,320
 BatchNorm2D-17   [[1, 16, 160, 160]]   [1, 16, 160, 160]         64
     ReLU-17      [[1, 16, 160, 160]]   [1, 16, 160, 160]          0
Conv2DTranspose-8 [[1, 16, 160, 160]]   [1, 16, 160, 160]        2,320
 BatchNorm2D-18   [[1, 16, 160, 160]]   [1, 16, 160, 160]         64
     ReLU-18      [[1, 16, 160, 160]]   [1, 16, 160, 160]          0
    Conv2D-15     [[1, 16, 160, 160]]    [1, 4, 160, 160]         68
=============================================================================
Total params: 1,620,644
Trainable params: 1,614,756
Non-trainable params: 5,888
-----------------------------------------------------------------------------
Input size (MB): 0.29
Forward/backward pass size (MB): 91.31
Params size (MB): 6.18
Estimated Total Size (MB): 97.78
-----------------------------------------------------------------------------

5. 训练

根据自己电脑硬件合理调整参数进行训练,执行train.py文件
保存模型于 output 文件夹

$ python train.py

# Epoch 1/15
# step  30/416 [=>............................] - loss: 0.9846 - ETA: 5:49 - 907ms/step

6. 预测

执行predict.py文件,预测测试集中前两个数据

效果还可以吧

谢谢

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
愚人陆陆
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区