技术专栏
【编码】表面缺陷检测
1.数据集情况
将数据集划分为训练集、测试集和验证集
原始数据集地址Kolektor Surface-Defect Dataset (KolektorSDD/KSDD) | ViCoS Lab
原始数据集共两个文件夹,0:359 (无缺陷) 1:40(有缺陷)
该数据集收集了电子换向器的缺陷图像。具体地,在电子换向器的塑料包埋表面上,存在微小的破损或裂缝。
图像是在受控条件下【光照均匀等】采集的。
为缺陷图像提供了缺陷的像素级标注。【原数据标注为语义分割的标注】
该数据集包括对50个缺陷电子换向器的每个换向器表面采集8张不重叠的图像,得到共399张图像,其中包括:
- 52张缺陷图像。
-347张无缺陷图像。
2.数据集划分
# -*- coding: utf-8 -*-
"""
将数据集划分为训练集,验证集,测试集
"""
import os
import random
import shutil
# 创建保存图像的文件夹
def makedir(new_dir):
if not os.path.exists(new_dir):
os.makedirs(new_dir)
random.seed(1) # 随机种子
# 1.确定原图像数据集路径
#dataset_dir = "D:/test2021/train_val_test0811/" ##原始数据集路径
dataset_dir = "C:/Users/whd/Desktop/1临时/data3(1)/data_biaomian/" ##原始数据集路径
# 2.确定数据集划分后保存的路径
split_dir = "C:/Users/whd/Desktop/1临时/data3(1)/biaomianafter/" ##划分后保存路径
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "val")
test_dir = os.path.join(split_dir, "test")
# 3.确定将数据集划分为训练集,验证集,测试集的比例
train_pct = 0.8
valid_pct = 0.2
test_pct = 0
# 4.划分
for root, dirs, files in os.walk(dataset_dir):
for sub_dir in dirs: # 遍历0,1,2,3,4,5...9文件夹
imgs = os.listdir(os.path.join(root, sub_dir)) # 展示目标文件夹下所有的文件名
imgs = list(filter(lambda x: x.endswith('.jpg'), imgs)) # 取到所有以.png结尾的文件,如果改了图片格式,这里需要修改
random.shuffle(imgs) # 乱序图片路径
img_count = len(imgs) # 计算图片数量
train_point = int(img_count * train_pct) # 0:train_pct
valid_point = int(img_count * (train_pct + valid_pct)) # train_pct:valid_pct
for i in range(img_count):
if i < train_point: # 保存0-train_point的图片到训练集
out_dir = os.path.join(train_dir, sub_dir)
elif i < valid_point: # 保存train_point-valid_point的图片到验证集
out_dir = os.path.join(valid_dir, sub_dir)
else: # 保存valid_point-结束的图片到测试集
out_dir = os.path.join(test_dir, sub_dir)
makedir(out_dir) # 创建文件夹
target_path = os.path.join(out_dir, imgs[i]) # 指定目标保存路径
src_path = os.path.join(dataset_dir, sub_dir, imgs[i]) #指定目标原图像路径
shutil.copy(src_path, target_path) # 复制图片
print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point-train_point,img_count-valid_point))
结果展示
上面的程序亲测可用,另外后面的两个可用的数据集划分资料,质量也非常高。
3.加预训练后,准确率明显提升
python tools/test.py configs/resnet/resnet50_8xb32_in1k_biaomian_pretrain.py work_dirs/resnet50_8xb32_in1k/epoch_100.pth --out result.pkl --show-dir output_cls
运行结果如下:98.7654%
会生成一个文件(result.pkl)和一个文件夹(output_cls)。其中result.pkl文件保存的是总体的识别结果(也可以是其他指标,需需要在配置文件里修改),output_cls保存的是对测试集的每个图片的识别结果,并标记到图片上(注意这个图不是原图,是随机裁减并归一化之后的图)。
如下图所示:
4.openmmlab提供模型部署功能
包括目标分类模型和目标检测模型。
5.实验结果可视化
python tools/analysis_tools/analyze_logs.py plot_curve your_log_json --keys loss --legend loss
python tools/analysis_tools/analyze_logs.py plot_curvework_dirs/resnet50_8xb32_in1k/20230409_101443/20230409_101443.log --keys accuracy_top-1 accuracy_top-2 --legend top1 top2 --out results.jpg
6 Deep Learning深度学习可视化工具
其他
-1. 其他的工业缺陷数据集。
-2.其他的数据集划分的参考资料。
(1)https://github.com/jfilter/split-folders
(2)Python划分图像文件夹为训练集、验证集和测试集
声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包
点赞
收藏
评论
打赏
- 分享
- 举报
评论
0个
手气红包
暂无数据
相关专栏
-
浏览量:9919次2021-02-23 14:31:42
-
浏览量:171次2023-08-23 09:24:30
-
浏览量:1952次2020-08-12 09:36:09
-
浏览量:1972次2020-08-12 09:23:23
-
浏览量:1471次2019-11-13 14:11:24
-
浏览量:3772次2020-07-27 16:07:46
-
浏览量:2252次2018-05-14 22:53:36
-
浏览量:2603次2019-11-21 14:13:43
-
浏览量:2693次2020-08-12 09:33:36
-
浏览量:3585次2020-08-03 19:28:14
-
浏览量:730次2023-08-28 09:14:45
-
浏览量:670次2023-10-30 15:19:41
-
浏览量:3334次2020-08-17 19:55:50
-
浏览量:2497次2022-10-13 10:22:20
-
浏览量:11506次2020-12-12 18:07:34
-
浏览量:2105次2018-05-10 15:46:03
-
浏览量:1893次2018-08-15 09:50:09
-
浏览量:1853次2020-03-26 09:54:32
-
浏览量:705次2023-07-26 10:17:54
置顶时间设置
结束时间
删除原因
-
广告/SPAM
-
恶意灌水
-
违规内容
-
文不对题
-
重复发帖
打赏作者
Tony
您的支持将鼓励我继续创作!
打赏金额:
¥1
¥5
¥10
¥50
¥100
支付方式:
微信支付
打赏成功!
感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~
举报反馈
举报类型
- 内容涉黄/赌/毒
- 内容侵权/抄袭
- 政治相关
- 涉嫌广告
- 侮辱谩骂
- 其他
详细说明
审核成功
发布时间设置
发布时间:
请选择发布时间设置
是否关联周任务-专栏模块
审核失败
失败原因
请选择失败原因
备注
请输入备注