资讯文章
使用多标签分类数据训练 AI 的方法
该图显示了每次输入数据分布时如何学习新信息,同时保留过去学到的信息
物联网 (IoT) 技术的进步使我们能够轻松、持续地获取大量不同的数据。人工智能技术作为利用这些大数据的工具而受到关注。
传统的机器学习主要处理单标签分类问题,其中数据与相应的现象或对象(标签信息)处于一对一的关系中。但是,在现实世界中,数据和标签信息很少具有一对一的关系。
因此,近年来,人们的注意力集中在多标签分类问题上,该问题处理的数据与标签信息之间存在一对多关系。例如,一张风景照片可能包含天空、山脉和云等元素的多个标签。此外,为了有效地从不断获得的大数据中学习,还需要在不破坏以前学到的东西的情况下随着时间的推移学习的能力。
由大阪都立大学研究生院信息学研究科的增山直树副教授和野岛雄介教授领导的研究小组开发了一种新方法,该方法将具有多个标签的数据分类性能与持续学习数据的能力相结合。在真实世界多标签数据集上的数值实验表明,所提方法优于传统方法。
这种新算法的简单性使得设计可以与其他算法集成的进化版本变得容易。由于底层聚类方法根据数据条目之间的相似性对数据进行分组,因此有望成为持续大数据预处理的有用工具。
此外,分配给每个集群的标签信息是使用基于贝叶斯方法的方法不断学习的。通过分别连续学习数据和学习数据对应的标签信息,既实现了较高的分类性能,又实现了持续的学习能力。
“我们相信我们的方法能够从多标签数据中不断学习,并具有未来大数据社会中人工智能所需的能力,”Masuyama教授总结道。
声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包
点赞
收藏
评论
打赏
- 分享
- 举报
评论
0个
手气红包
暂无数据
相关专栏
-
浏览量:558次2023-09-28 11:19:15
-
浏览量:975次2023-02-09 09:35:45
-
浏览量:2229次2023-11-25 17:47:33
-
浏览量:1343次2023-03-22 10:48:22
-
浏览量:717次2023-03-09 09:14:06
-
浏览量:8992次2021-06-21 11:49:58
-
浏览量:13188次2021-07-08 09:43:47
-
浏览量:393次2023-07-14 14:21:54
-
浏览量:7322次2021-05-06 12:40:38
-
浏览量:5587次2021-02-18 16:03:22
-
浏览量:4350次2021-07-09 09:49:32
-
浏览量:9750次2021-04-20 15:42:26
-
浏览量:1711次2023-04-14 10:12:00
-
浏览量:6642次2021-05-24 15:13:24
-
浏览量:7595次2021-05-19 16:25:40
-
浏览量:7788次2020-12-27 09:50:29
-
浏览量:4927次2021-06-21 11:50:25
-
浏览量:505次2023-09-16 11:22:02
-
浏览量:4454次2021-06-28 14:10:22
置顶时间设置
结束时间
删除原因
-
广告/SPAM
-
恶意灌水
-
违规内容
-
文不对题
-
重复发帖
打赏作者
艾
您的支持将鼓励我继续创作!
打赏金额:
¥1
¥5
¥10
¥50
¥100
支付方式:
微信支付
打赏成功!
感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~
举报反馈
举报类型
- 内容涉黄/赌/毒
- 内容侵权/抄袭
- 政治相关
- 涉嫌广告
- 侮辱谩骂
- 其他
详细说明
审核成功
发布时间设置
发布时间:
请选择发布时间设置
是否关联周任务-专栏模块
审核失败
失败原因
请选择失败原因
备注
请输入备注