海思HI35xx语音识别方案

在学了在学了! 2020-08-26 17:32:45 2509

前言
语音识别是智能化应用的一个重要分支,也是语音交互功能的基础。语音识别基于神经网络算法,借助大数据进行模型训练,据科大讯飞相关数据报道,它们已经能够实现98%以上的准确识别率,同时支持多种外语及国内的一些方言。从语音技术实现方式分类可以分为本地识别和云识别,本地识别主要是借助语音芯片诸如LD3320等,而云识别目前国内比较火的有科大讯飞、百度AI等云服务提供,它们提供友好的API接口,支持多种开发语言,相比于本地语音识别,它的识别准确率更高,应用场景更为灵活。
海思HI35xx音频知识
海思音频模块包含音频输入(AI)、音频输出(AO)、音频编码(AENC)、音频解码(ADEC)这四个模块,这几个模块实现了声音采集、声音播放以及声音编解码的功能。原始的音频信号是模拟信号,通过pcm方式进行数字化,常用音频采样频率有8khz、16khz、32khz、48khz。根据香农采样定理,为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍,而人能听到的声音频率范围在20~20000hz,而且听力敏感区是集中在中频区段,所以用16khz频率采样作为语音识别原始数据既能保持音质,也能降低数据运算复杂度。
根据笔者的经验,海思音频模块硬件实现方式有两种,一种是将音频芯片集成到芯片内部,作为片上资源使用,另一种是外接音频芯片方式,如wm9874。这两种接法大同小异,与音频芯片控制指令数据交互是由I2C实现,而音频数据交互则是由I2S或者PCM来实现。软件开发需要注意的是音频采样率设置、采样数据位宽,8位或者16位,不同的云语音识别平台对音频采样率、位宽都有要求,不过比较通用的是16khz采样、16位数据宽度、pcm音频格式。下图是海思CPU与音频芯片用I2S或PCM方式进行数据交互的示意图,可见PCM方式只有单声道,而没有多声道立体声的概念。


语音识别方案

语音识别方案分为硬件本地实现和智能语音云实现,我比较推崇使用云方式,它成本较低,后期维护少,识别准确率高,而且随着5G商业化浪潮实现,网络延时基本可以忽略,语音识别实时性与本地相比无异。配合HIMPP平台的API使用实现音频采集、处理、推云平台的功能并不难,首先MIC作为音频模拟信号输入源,由AUDIO CODE芯片进行模数转换,然后通过I2S或者PCM方式与CPU进行数据交互,接着CPU通过Socket连接云服务器进行推流,云将语音识别的数据返回。此外,云还有语音合成功能,它可以将文字合成为语音,此过程恰好与语音识别的数据流相反,并最终推向speaker。HIMPP平台的API使用可以参考《海思HI35xx平台软件开发快速入门之背景知识》
语音识别案例
这里参考了百度AI语音识别案例源码,百度AI语音识别的样例编程语言环境为C++,由于采用了云方式,避免不了进行网络开发,根据百度AI语音开发文档,有要求一定运行环境,网络连接请求依赖于curl、加密依赖于openssl、数据交互格式依赖jsoncpp,还有百度语音识别的SDK开发包,这里这里给出了这些运行环境移植的源码。

// 请替换您下载的C++SDK路径

#include "aip-cpp-sdk-0.7.4/speech.h"

void ASR(aip::Speech* client);

void ASR_url(aip::Speech* client);

void TTS(aip::Speech* client);

int main()

{

    // 务必替换百度云控制台中新建百度语音应用的 Api Key 和 Secret Key

    aip::Speech * client = new aip::Speech("15398376", "GgCrxhNOhe0UnP9k0hHaUxfF", "TEmp8hCGMeVV61VG0PAKXKRG4nekMLmI");

    ASR(client);

    ASR_url(client);

    TTS(client);

    return 0;

}

/**

 * ASR语音识别示例

 */

void ASR(aip::Speech* client) {

    std::map<std::string, std::string> options;

    options["lan"] = "ZH";

    std::string file_content;

    aip::get_file_content("./16k_test.pcm", &file_content);

    Json::Value result = client->recognize(file_content, "pcm", 16000, options);

    std::cout << "语音识别本地文件结果:" << std::endl << result.toStyledString();

}

/**

 * ASR语音识别示例,使用远程文件地址

 */

void ASR_url(aip::Speech* client) {

    std::map<std::string, std::string> options;

    options["lan"] = "zh";

    Json::Value result =

    client->recognize_url("http://bos.nj.bpc.baidu.com/v1/audio/8k.amr",

                          "http://your_site/dump",

                          "amr", 8000, options);

    std::cout << "语音识别远程文件结果:" << std::endl << result.toStyledString();

}

/**

 * TTS语音合成示例

 */

void TTS(aip::Speech* client) {

    std::ofstream ofile;

    std::string file_ret;

    std::map<std::string, std::string> options;

    options["spd"] = "5";

    options["per"] = "2";

    ofile.open("./tts.mp3", std::ios::out | std::ios::binary);

    Json::Value result = client->text2audio("百度语音合成测试", options, file_ret);

    // 如果file_ret为不为空则说明合成成功,返回mp3文件内容

    if (!file_ret.empty())

    {

        // 合成成功保存文件

        ofile << file_ret;

        std::cout << "语音合成成功,打开目录下的tts.mp3文件听听看" << std::endl;

    } else {

        // 合成出错,打印错误信息

        std::cout << result.toStyledString();

    }

}

https://blog.csdn.net/dosthing/article/details/86653199

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 1 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
在学了在学了!
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区